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( PREFACE )

Today it is hardly necessary to talk about the importance of Mathematics in shaping all
the successive human civilisations culminating in the present modern world. Whatever has
been said or will be said about it are too little. Famous Indian Mathematician Bhaskaracharya,
born in A.D.1114 conceived Mathematics as one embodied in the following verse:

ERIRMCIR e

AR, AU |
TEd, ASTE IO

TUTd gEHEay |

- Vedanga Jyotish by Lagda (About 1100 B.C)

(As crest in a peacock’s feather, jewel in a Cobra’s hood, Mathematics is the crest-
jewel of all scientific knowledges.)

Mathematics, as a continuous human endeavour, seeks to capture the natural laws in
the form of supreme abstract formulations and as such it has to depend upon infallible logic
yielding the conclusions as eternal and absolute truth. It is a sublime discipline where falsehood
or any inaccuracy is not entertained.

Since the study of Mathematics has become inescapable for the acquisition of any
scientific knowledge, be it the farfetched subject like music or language, it is necessary to
make the study of Mathematics more absorbing and interesting. The only way to do this is to
encourage the students to pick up pen and paper and start solving the problems themselves.
Just as one learns swimming only after entering inside the water, one enjoys the taste of the
sweets only after putting it inside the mouth, Mathematics is learnt only through problem
solving and this is the shortest route. No amount of lecturing on ‘swimming’ can equip one to
swim.

The authors of the book, working under diverse constraints, are not fully certain if they
have lived upto the expectations and aspirations of the members of the Orissa Mathematical
Society in particular and teachers, students and the public in general.

Any suggestions for the improvement of the book shall be greatefully acknowledged in
bringing out the successive editions.

The authors are greateful to the authorities of the Council of Higher Secondary Education
and The Text Book Bureau for the patience and care in bringing out the present volumes in its
present form.

Prof. G. Das
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(CHAPTER 1)

Mathematical Reasoning

1.0

How can it be that mathematics, being after all a product of human thought
independent of experience, is so admirably adapted to the objects of reality ?

- Einstein
Historical Introduction

During the early phase of civilization, mathematics was primarily computational and in-
tuitive in nature. Certain “rules of thumb” were devised by ingenuous minds to study problems
of day-to-day life. The same practice prevails more or less even now at our elementary school
level. This does not mean that whatever is taught at that level is incorrect. Only one is not
accustomed to stating explicitly all assumptions upon which the conclusions are based. Con-
sequently, though valid conclusions might have been drawn on many occasions, the exact
canons of logic leading to these are not in view. This could be quite hazardous, if not rectified
at a later stage, by forcing one to make erroncous judgements.

With the advent of Greecek civilzation towards the sixth century B.C. the concept of
“proof” took root in mathematics. After the first treatise on logic “The Organon”, was
compiled by the great Greek philosopher Artistotle (fourth century B.C). Euclid of Alexandria
(300 B.C.) wrote thirteen volumes of the book “Elements” on gecometry which made ample
use of the Aristotelian Logic. Until the later half of the nineteenth century, “Elements’ had
been deemed as perfection par excellence, but with the passage of time, various omissions,
commissions and inconsistencies were detected in it by David Hilbert (1862 - 1943) and
others, though that did not shelve the Euclidean geometry altogether since its basic propositions
were largely in conformity with experience. With suitable rectifications in reasoning, while
Euclidean geometry was restored once more, new geometries sprang up too. This was a
miraculous victory of logical reasoning.

In the history of mathematics, similar happenings have taken place time and again. It
happened once when persons like Bishop Berkley were critical about the very basis of the
reasoning used in Calculus that was developed by Newton and Leibnitz (who were unaware
of the already developed Indian treatment of the subject), to study motion and properties of
geometric figures. Answers to these criticisms were, of course, promptly forwarded by other
mathematicians and the method of Calculus became a great success in science. It was through
many meandering routes around the turn of the century, that a necessity was felt to recast the
entire edifice of mathematics in the language of sets. A lead was provided by the German
mathematician Georg Cantor (1845 - 1918) who was drawn to it while investigating questions
pertaining to trigonometric series and series of real numbers. It was, however, soon evident
that certain logical contradictions were inherent in the system itself. The intrinsic beauty of
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Cantor's reasoning which incidentally provided a proof of the abundant existence of
transcendentals prompted mathematicians to find remedies by sharpening this reasoning. The
theory that evolved in this way is termed as Mathematical Logic.

Subsequently, Turing and Godel made deeper studies of the system. This too gave rise
to another interesting development. The logic that was deemed as the purest of pure
mathematics now became a tool for the building of modern digital computers. It is interesting
to note that the hypothesis of Turing and Post was ultimately realised by the Hungarian
mathematician John Von Neumann (1903 - 1957).

In view of the fact that mathematics is essentially deductive innature, it is inseparable
from logic. Its propositions are deduced from the basic assumptions and given premises, in
accordance with the laws of logic. The baisc assumptions of a mathematical system must be
clearly stated at the start. Their careful choice gives immense freedom to the system by
combining several mathematical structures together. Some of these structures might be
relevant for applications to problems of life. The basic assumptions may be so formulated as
to make the physical state amenable to mathematical handling, also including some formal
structures at the same time. In this task too, logic has a role to play. A good grounding inlogic
can, therefore, serve a twofold purpose. Students can use it to set their mathematics right or
else see how, for example, the computer hardware is designed.

It is worth mention that the scope of logic has widened vastly to cater to the present day
requirements in the form of multivalent logics. Few examples along this line are the three valued
logic established independently by J. Lukasiewicz (1920) and E. Post (1921). They also
mntroduced many-valued logic. In fact, Buddha (563 B.C. to 483 B.C) is reported to have
introduced multivalent logic along with his philosophy of Madhyam Marg. This logic has made
a come back success through the pioneering work of L.A.Zadeh (1963) in the form of fuzzy
logic.

Our scope here is, however, quite limited. So we confine ourselves only to the most basic
concepts, principles and methods of logic, in order that valid conclusions can be drawn from
given premises. An informal use of real numbers, rationals, integers, sets and function will be
made in the sequel which will be treated systematically in due course. We use the logic which
is mainly Aristotelian, furthered by the mathematician and logicist George Boole (1815-1864).

1.1 Mathematically acceptable Statements :

While presenting an argument or during a conversation, we express our ideas through
sentences. Sentences are of various types, such as a question, an exclamation, an order or a
wish, statement of a fact and so on. All types of sentences are not suitable for logical
investigations. The following definition specifies, in an informal manner, the type of sentence
that is admissible for common logical reasoning. Such sentences are called statements or
propositions.
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Definition : A proposition (or mathematically acceptable statement) is a declarative sentence
which is either true or false, but not both.

This means that a proposition is a sentence which makes a definite assertion (of some
fact) and it can be said in unequivocal terms if that assertion is true or false. It also appeals to
common sense that a statement cannot be both true and false at the same time. For instance, it
is possible to say definitely if Delhi is capital of India or Delhi is not capital of India and
certainly it cannot be both. Hence 'Delhi is capital of India’ and 'Delhi is not capital of India' are
both propositions as the first is true and the second is false.

Truth value of a proposition : When a proposition is true, we say that its truth value is T and, if
false, its truth value is F.

Consider a few examples of propositions along with their truth values mentioned against
each.

“The earth moves round the sun™, (T)
“Atriangle has three angles™, (T)

“Two is greater than five”, (F)

“There is no even prime number”, (F)

“The sunrises in the east every morning”, (T)

Interrogative or exclamatory sentences, wishes, orders are examples of sentences that
are not statements. Consider the following sentences, for instance :

“Make hay while the sun shines™ (an advice)

“Where are you going ?” (a question)

“Mz.jly God grant you .long life. } (wishes)

“Wish you a happy birthday.”

“How beautiful is that flower ! (exclamation)
“Bring a glass of water.” (order or command)

These are not statements as it is meaningless to talk oftheir truth values.
Sentences like

x is less than 5,

u is the father of v

are also not statements since they involve variables, though they become statements when the
variables x, u, v are specified.

Look at the following sentences.
“Socrates was a wiseman.”
“Ramesh is rich.”

“Pintu is young.”
“Raju isa good teacher™.
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These are also not statements since they contain words like “wise”, “rich”, “young”
“good” whose truth or otherwise cannot be asserted in the absence of any measuring yardstick.
Such sentences are called fuzzy propositions whose discussion is outside the scope of this
book.
Note : Remember that a sentence cannot be called a statement if
i) It is an exclamation.
ii) It is an order or request.
iii) It is a question.
iv) Itinvolves variable time such as ‘yesterday’, ‘to day’, ‘tomorrow’ and etc.
v) Itinovolves variable places such as ‘here’, ‘there’, ‘everywhere’ and etc.
vi) Itinvolves pronouns such as ‘she’, ‘he’, ‘they’ and etc.
vii) It involves adjectives/undefined terms or words such as 'good’, 'beautiful', 'wise' and etc.
Example - 1:
Check whether the following sentences are statements. Give reason for your answer.
1)  7islessthan 5.
i)  Please open the door.
i) The sunis a star.
iv) Ramis an intelligent student.
v) Ifx=1,x*+2x+5 = 7.
vi) There is no even prime number.
vi)) xislessthan 5.
viii) Moon is a star.
x) Mind your own business.
x) Bepunctual.
Solution
) “7islessthan 5" is false, so it is a statements.
i)  This is not a statement as it is meaningless to talk ofits truth value. It is a request.
i) This is a statement as it is true.
iv)  This isnot a statement since it contains the undefined term intelligent.
v)  This is a statement since x is defined and truth value this statement is F.
vi) This is a statement since its truth value is F. (2 is the only even prime)
vii) This is not a statement since x is unknown.
viii) This is a statement as its truth value is F.
ix) Thisis not a statement as it is meaningless to talk ofits truth value.

This is not a statement as it is an order.
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Connectives, Compound Proposition :

A proposition is normally denoted by small Roman letters like p, g, s etc. to facilitate
their abstract study. However, two or more propositions can be combined to form new
propositions. There are four such key words and phrases, called connectives, playing a major
role in combining propositions, which are :

or, and, only if, if and only if.

A proposition can be modified by the word ‘not” which is also taken as a unary connective.
We shall elaborate upon these connectives including the modifier “not” in due course.
A proposition in which one or more of these connectives appear, is called a composite or
compound proposition while its individual constituents are called its prime components.
Remember that a proposition is prime by choice and not by itself. Consider the following
statement.

“Ifit is Sunday or Thursday, then the orderly is on leave.”

This is a composition of the following propositions :

p : Itis Sunday

q It is Thursday

r : It is Sunday or Thursday.

s : The orderly is on leave.

We may choose cither p, g, s or r s as the prime components of the given proposition.

Example-2

Find the connectives and component statements of the following compound statements

and check whether they are true or false.

)  2isecvenand prime.

ii) 30isdivisible by 2, 3 and 5.

ii)  All rational or irrational numbers are real numbers.

iv) Insat and moon are satellites of earth.

v)  The constituents of water are oxygen and nitrogen.

vi) 12 is multiple of2, 3 and 6.

vi) Arjun was son of Kunti and Pandu.

vii) A student qualifying either KVPY (Krishore Vaigyanik Protsahan Yojana) or IITIEE

Advance can get admission in [.I.Sc. (Indian Institute of Science)

ix)  Sun and eletric bulbs are luminous objects.
Solution :
1)  The component statements are
p:2iseven
q: 2 is prime

Here both the component statements are true and connecting word is ‘and’.
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The component statement are

p : 301s divisible by 2

q : 301is divisible by 3

1 : 30 is divisible by 5

Here above three prime statements are true and the connecting word is ‘and’.
The component statement are

p : All rational numbers are real numbers

q : All irrational numbers are real numbers

Here both statements are true and connecting word is ‘and’.
The component statement are

p : Insat is satellite of earth

q : Moon is satellite of earth

Both the statements are true and connecting word is ‘and’.

The component statements are

p : The constituent of water is oxygen

q : The constituent of water is nitrogen

The first statement is true and the second is false. The connecting word is ‘and’.
The component statements are

p: 12 is multiple of 2

q: 12 is multiple of 3

r: 12 is multiple of 6

All the three statements are true and connecting word is ‘and’.
The component statements are

p : Arjun was son of Kunti

q : Arjun was son of Pandu

Here both the statements are true and connecting word is ‘and’.
The component statements are

p : Astudent qualifying KVPY can get admission in [ISc.

q : Astudent qualifying IITJEE Advance can get admission in [ISc.
Here both the statements are true and connecting word is ‘or’.
The component statements are

p : Sun is a luminous object

q : Electric bulbs are luminous objects

Here both the statements are true and connecting word is ‘and’.
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1.2 Negation

If proposition p is modified by the word “not™, a new sentence results. We call it the
negation of p and denote it by the symbol ~ p.

Consider the following propositions :
p:2+3=5

¢ : Six is not a prime number.

r . Three is less than one.

s : Nitin went to school today and yesterday.

The respective negations are :

~p:2+3=35

(one can also write ~ p as “2 +3 does not equal 5.7)

~ q : Itis not true that six is not a prime number.

(It is also correct to write ~ g as “Six 1s a prime numbet.”)

~r : Three is not less than one
(One can also write ~ 7 as ““it is not true that three is less than one.” It is not correct to write
~T1as “One is greater than three™.)

~ s . Itis not true that Nitin went to school today and yesterday.

(Tt isnot correct to write ~ s as Nitin did not go to school today and yesterday.)

It is often convenient to use the phrase “it is not true that” while writing negations of
composite statements, when the use of the word, “not’ is ambiguous, as in case of  ~s
above.

We assume that the negation of any proposition is a proposition. Also, in case of the
examples p, g, % sited above, a proposition and its negation are seen to have opposite truth
values. This fact is stated below as an axiom.

Axiom of negation :
For any proposition p, if p is true, then ~ p is false and if p is false, then ~ p is true.
The axiom of negation can be represented by the following table.

P|~P
T| F
F| T
The negation Table

1.3 Conjunction
Consider the following two propositions.
Raju went to the market.
Raju bought a note book.
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These two propositions can be combined by using the connective “and’ to form the
following new sentence : Raju went to the market and bought a note book. Similarly, if p and
g are two propositions, they can be combined by using the connective “and”. The new sentence
is called their conjunction and is written as p A g, the symbol A standing for the word “and”.
The conjunction p A ¢ becomes a proposition when a definite truth value is assigned to it. This
is done by means of the following axiom.

Axiom of conjunction :

A conjunction p A ¢q is true if both p and ¢ are true and false if at least one of p,
q is false.

The axiom of conjunction can be represented by the following table :

PAg

R A =N =LY
I =S
leslResl Rl Byl

The conjunction table

In English language, a conjunction is sometimes expressed without using the word “and”
explicitly as in the following examples.

I stepped into the bus, but got down near the college.
Ram came in, while Hari went out.

The night is dark, though stars are shining.

Itis clear from the context of each that it is a conjunction.

There are also cases when ‘and’ is used, but it is not a connective; for example, ‘the
concert is a combination of vocal and instrumental music’. It is not a compound statement and
‘and’ is not a connective.

Example - 3

Write the truth values of the conjunctions :

) J4=2 and2isaprime

i) /4 =-2and-2isaninteger

iiiy /3 isirrational and 3 is a complete square

iv) /3 isrational and 3 is a complete square

Solution :

Taking the first statement as p and the second as q in each case, the truth value ofthe conjuction
p A q is demonstrated below, using the axiom of conjunction :
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P q pAq
) T T T (Both p and q are true)
i) F T F (/4 only means positive square root of4, so p is false;
q is true)
i) T F F (p is true, q is false)
v) F F F (Both p and q are false)

Thus, statement- iis true, all others are false.
1.4 Disjunction

When two statements p, g are combined by the word “or” to form a new sentence, the
latter is called their disjunction and is written as p v g. Consider the following propositions :

p : Sunday is a holiday

g - Thursday is a holiday

The disjunction p v g thenrepresents the sentence

p v q: Either Sunday is a holiday or Thursday is a holiday.
A few more examples of disjunction are :

Three is greater than five or it is not.

Nine is a prime or divisible by two.

The number ./ is either rational or irrational.

You shall come or T will go.

The disjunction of two propositions is taken to be a proposition and the rule to determine
its truth value is as follows :

Axiom of disjunction :

A disjunction p v q is true if at least one of p, q is true and false if both p and q are
false.

The axiom of disjunction can be represented by the following table :

pla|pr 9
r\r|y r
T\F| T
F|\T| T
F|F| F

The disjunction table
Note :
The connective ‘or’is used in both exclusive and inclusive sense.
Ifp v q is exclusive, then either of p or q can be true, not both. But in the inclusive case both
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the statements can be true in addition to either being true.
Take a few examples :
Example-4
1) A student can have Odia or Sanskrit as MIL in a higher secondary class.
i) Anemployee either goes on leave or attends to his duty.
i) The product of two real numbers is positive if both are positive or both are negative.
iv) Ifxequals 2 or -2, then x* equals 4.
Observe that in all these compound statements ‘or’ is used in exclusive sense.
Now take another set of example and observe that use of “or’ is in inclusive sense.
v) InaZoo you can see reptiles or birds as you like.
vi) Inarestaurant you can take veg. or non-veg. items.
vil) Ifp is aprime or a. counting number, then necessarily it is positive.
vii)) Our skin becomes wet if exposed to rain or we swimin a pool.
1.5 Conditional
A proposition of the type “if p then ¢” is called a conditional. It can also be written as
“p is sufficient for q”°, “q is necessary for p”, “p onlyif¢™’, “q provided that p”” and so on.
In symbols, we write p — q. Here p is called the antecedent (or hypothesis) and ¢, the
consequent (or conclusion).
“Ifin A ABC, ZC isright-angled, then AB*=BC*+AC?” is an example of a conditional
inwhich the antecedent is ‘in A ABC, ZC isright angled’ and the consequent is 'AB* = BC*
+ AC2.'" A conditional is thus formed by combining two statements by the connective “if...
then”.
Axiom of conditional :

A conditional p — ¢ is false only when p is true and ¢ is false. In all other cases
it is true.

Let p . Nita has ten rupees.

¢ - She will buy a bottle of Jam.
Then p — ¢ : If Nita has ten rupees, then she will buy a bottle of Jam.
The tabular representation of the axiom of conditional is as follows.

pP—9

SIS IESTRS
IS
e IGIEIIR

(The table for conditional)
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We may notice that in the above axiom of conditional the falsity of » — ¢’ occurs only
when p is true and g is false.

The conditional p — ¢ is frequentlyread as “if p then g™ or “p onlyif ¢”’. We do not

read p— q as “p implies ¢”’. The word “implies’, for the time being, is reserved to be indicated
by some other symbol which is closely associated with the connective—. (See sc-1.7)

1.6 Converse, biconditional, inverse, contrapositive and contradiction
Given a conditional p— ¢, three other propositions related to it can be framed.
These are :
(i) Converse: g—p
(i) Inverse:~p — ~q
(i) Contrapositive : ~q— ~p
The conjunction ofa conditional p — ¢ and its converse ¢ — p is called a biconditional
and is written as p <> g. Thus p < g is the same as (p — ¢) A (¢— p). Equivalent ways of
expressing a biconditional p «» ¢ are:
pifandonlyifg
piffg
g ifand only ifp
p is necessary and sufficient for g
¢q is necessary and sufficient for p

The statement : “10 is a prime iff it has no proper divisor ”’ is an example of a biconditional.
Since a biconditional p <> g, is the conjunction of the conditional p—¢ and its converse g—p,
it follows from the axiom ofconjunction that p <> ¢ is true when and only when p — g and ¢
— p are both true. The table given below shows that this happens when p, g are both true or

both false.

rl q9]| p»qlg=pr| » | ~q|P=>~q|~9>~1 ~PVq| P9
T T T T F F T T T T

T| F F T F T T F F F

F T T F T F F T T F

F F T T T T T T T T

Table for conditional, converse, inverse, contrapositive, biconditional
The truth table of biconditional is given below for sake of emphasis.

P g pPoq
T T T
T F F
F T F
F F T
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When two composite propositions formed out of the same prime components have
the same truth value for each possible combination of truth values of their prime
components, we call them equivalent and write

P, =P, (orP, < P)

The above table shows that

(i) p—>gand~pV g are either both true or both false and hence
P—>q=~pVgq

(i) The converse g— p and inverse ~p — ~q are either both true or both false, so that
q—=> p=~p—>~¢.

The equivalence or otherwise, of composite propositions can be easily verified by
constructing a truth table by which we mean a table in which all possible truth values are
assigned to the prime components and corresponding truth values of the composite propositions
are then computed by using the axioms described earlier. We have already constructed such

tables. Note that if the number of prime components is 2, then the table contains 2> = 4
horizontal rows. (What happens for » prime components ?)

Some further examples of equivalent propositions are the following :
® p=~Cp

(i) pvg=~(~pAr~q)
(iii) ~pArqg)=~pv~q
(iv) ~pva)=~pAr~q
V) pal@gvr)= prqg)v(pAan
(i) pv(@Aar)=s pvgarpvr)

These can be verified by constructing corresponding truth tables. We only construct a

truth table for verifying (vi).

De Morgan's laws

=

ganr | pvigar) | p v Apvr)

S
i

T T

I I I ]

I I N I

I I I I
R IR R - R B RSN S

I I IR R
I I T N T
I I I
T IR R
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1. 7 Tautology, Implication, Double implication

Ifa composite proposition p is always true for all possible assignment of truth values to
its prime components, then it is called a tautology. Here also, the truth table of a given
proposition determines if it is a tautology or not.

The following are some examples of tautology.
(1) pv(~p) (Law of excluded middle)
@ ~@PA~p) (Law of contradiction)
(i) p o~ (~p) (Law of double negation)
The above three tautologies are amongst some of the widely known laws of classical
(that is, Aristotelian) logic.
) (PrP->9)—>q
W) (@->9A@->1)->(p>(@Ar)

o) (0= A (g= )= (p—7) (Principle of syllogism)
(Principle of syllogism, is a basic principle of mathematical reasoning.)
i) (~¢ > ~p) (P - q) (Law of contrapositive)

Law of the contrapositive is a special case of the well known classical principle of
reductio ad absurdum which was widely used by Euclid in his axiomatic treatment of geometry
and has been in use since then in mathematical proofs. This principle simply asserts that a
conditional p— ¢ can be proved to be true if p A ~g implies a contradiction making use of
other established tautologies, if necessary. By "contradiction' we mean a proposition which
is false for all possible assignments of truth values to its prime components. For example
p A~ pis acontradiction.

Consider, for instance, the following proposition from geometry :
The base angles of an isosceles triangle are congruent.

This is proved by supposing that in a given isosceles triangle, the base angles are not
congruent and then arriving at a conclusion that an angle is congruent to a proper part of it
which forms a contradiction in conjunction with other axioms of geometry. The conclusion,
therefore logically follows from the hypothesis of the proposition.

We construct a table below to prove (vii) and leave the rest to the reader.

P 14 ~P ~q - >~p | pP>¢q (~q—> ~p)< (P > q)
T |T F F T T T
T |F F T F F T
F [T T F T T T
F |F T T T T T

If a conditional p— ¢q is a tautology, then we say that p implies ¢ and we write
P = q toindicate this implication.
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Nofte : In order to avoid a point of confusion regarding the use of notations — and = some explanation

is given below.

First note that the symbol — is a connective and for two statements p and ¢ (true or
false), p— q is another statement which may be true or false as per the axioms of conditional.

On the other hand the symbol = is not a connective. For example we cannot write
pv(g=rA@E=p).

The statement p= ¢ means that p— ¢ is always a true statement i.e. from the
truth of p, truth of ¢ follows. In other words it means that g is true whenever p is true. It is
trivial that p— g is true when p is false. Thus p = g means that p — g is a tautology. Thus in
any logical argument once we assume that the hypothesis p is true if we have to automatically
accept that the conclusion ¢ is true, then we use the symbol p=¢q. Here there is no possibility
of g being false when p is true.

In simple words p = g means : if the statement p is true then the statement ¢ is true.
(seel.8)

Similary if a biconditional p <> ¢ is a tautology, we say that p implies and is implied by
q. We write p < ¢g to indicate this double implication.

p=q isread as "p implies g".

p< g isread as "p implies and is implied by q".

It should be noted that neither = is a connective nor p = ¢ is a statement formula.

Similar is the case for & and p < ¢g. We construct below truth tables for p— p, pA

(P—>q) —>q.

plp—p
T| T
F| T
p q pP—>q PAP-oq) pAP=>q) —oq
T T T T T
T F F F T
F T T F T
F F T F T

From the above tables we observe that the conditionals p— p and pA(p— q) — g are
tautologies.
Hence p = p and pA (p— q) =q.

The table for (~ ¢ — ~p) <> (p —¢g) given in this section illustrates that (~g —» ~p) <
(p — g) is a tautology.

So it is a double implication.
Hence (~q - ~p) (@ - q),

i.e. ~q —> ~pand p— q are equivalent statements.
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1.8 Quantifiers

Quantifiers are used to describe variables in relation to a predicate. We mention two
types of quantifiers, ‘existential’ and ‘universal’.

The existential quantifier is symbolized as ‘3°, read as ‘there exists’ or ‘there is” and the
symbol for universal quantifier is ‘V’, read as ‘for all’ or ‘for every’.

Few examples are in order.
Example-5

0) “There is a prime which is even’ can be written, using existential quantifier, as :
(3p) (pis an even prime)
‘is an even prime’ is the predicate which has been quantified by ‘p’.
We know, there is only one such prime.
This is symbolically expressed as :
(3'p) (p is an even prime) (In fact, 2 is the only even prime)
‘3!” isread as ‘there uniquely exists’ or ‘there exists only one’.

i) We know that square of every odd number is also odd and vice versa. This is expressed,
using universal quantifier, as

v neN, nis odd < n? is odd.
1ii) vy, yeR xy=yxandx+y=y+x
iv) vxeR x*>0

Later y<’)u will come across variety of cases of use of quantifiers.
Negation of a quantified statement :
This will be clear through the examples :

Example-6

) ~(yxeR,x*>0) = IxeR ¥* <0

or 3xeR ~ (x220) |
i) ~ (3x, Sil’lx =0) = yxeR, Sinx >0 or Sinx <0
iiiy (v nep) (n*-79n+1601 is a prime)

Negation of this statement is

(AneN) (n* =79n +1601 is not a prime)
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Remark :
We have both the statement and its negotion at hand. Which one, you think, is true ?

You can veryfy that ‘n>-79n+1601 is a prime for as many upto 79 verifications, starting from
n=1.

As in case of the so called ‘experimental proof” of elementary geometry, we are likely to jump
to the conculusion (?) that the proposition is true ! (We, infact, verify only three figures in elementary
geometry!)

But once you put n=80, n*>-79n +1601 = 1681 = 41? which is not a prime.
This proves that the second statement, i.¢. negation of the first, is true.

Thus, only one example is sufficient to disprove the first statement. Such type of examples are
known as counter examples and are of great importance in mathematics. If we fail to prove something,
we cannot say that it is false. But if we give an example where it is false, then and we disprove the
proposition.

We shall come back to similar such examples when we discuss ‘proof by induction’in a later
chapter.

Exercises- 1(a)

1. Choose the correct answer from the given choices :
Negation of ‘Paris is in France and London is in England’ is
A) Paris is in England and London is in France.
B) Paris is not in France or Landon is not in England.
C) Paris is in England or London is in France.
D) Paris is not in France and London is not in England.
ii) The conditional (pAq) = p is
A) atautology B) a contradiction
O) neither a tautology nor a contradiction
D) non of'these
1ii) Which of the following is a contradiction ?
A) (pAQ) A~ (pAQ)  B) pv (~pAq)
O (P> —p D) None of these
v) Which of the following is logically equivalent to ~ (~p —q)
A)paq, B)pa~q, O)~paq D)~pa~q
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vi)

(~(*P)) A qis equivalent to
A~parq Bparg Opa~q D)~pa~q

Ifp:It rains today, q: I go to school, r: I shall meet any friend and s: I shall go for a
movie, then which ofthe following is the proposition :

Ifit does not rain or if I do not go to school, then I shall meet any friend and go for a
movie ?

A)~pAqQ > (@ As) B)~pa~q) - (rAs)

C) ~(pAq) — (rvs) D) non of these

Which of the following is true ?
A)p>q=~p—>~q) B) ~(p—>~q) =~pAq)
O ~(~p >~ =~p AqQ D)~peq =[~(p—>q A~(q->p)]
The Inverse of the proposition (pA~q) — ris

A) ~r = (~pvq) By~pvq-o~

O r— (pa~q) D) non of these

The contrapositive of (pvq) - ris

Ar—-@vaq B)~r—(pVvaq)

O~ = (~p A ~q) D)p-(qvr)

Which of the following is inverse of the proposition : “If a number is a prime, then it is
odd.

A) if anumber is not prime, then it is odd.
B) ifa number is not a prime, then it is not odd.
C) if a number is not odd then it is not a prime.

D) ifa number is not odd, then it is a prime.

Give examples, five in cach case, of sentences that are

(i) propositions

(ii) not propositions

[llustrate the use of all connectives and the modified ‘not’ in five separate examples of
propositions.

Try to construct an example of a proposition involving all connectives and also the modifier

<

not".

Which ofthe following sentences are propositions and which are not ? Write with reasons:
(i 2<5
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(i)
(i)
(v)
)
(vi)
(vii)
(vii)
(i)
(x)
(xi)
(xii)

I[s9<37?

x is greater than 100.

Why are you crying ?

May God grant you long life.
Cuttack is a big city.

It is possible that there is life in Mars.
Ram is a friend of Hari.

X -x+1=0.

Oh ! What a scenery ?

You must go to school everyday.
It was raining yesterday.

6. Write down negations of each of the following :

@
(i)
(iif)
(iv)
)
(vi)

(vii)
(viii)
(ix)
(%)

Ifyou read, you will pass.

Johnisa friend of Thomas.

Fifteen is greater than five.

Either Pramod is clever or he is laborious.
Money is necessary for happiness.

It is raining and Mahanadi is flooded.

Pen is mightier than sword.

|x| is equal to either x or -x

It is raining and it is cool.

3+6>8 and 2+3 <6

7. Translate the following propositions into symbolic form, stating the prime components in each

casc.
(i)

(i)
(iii)
(iv)
V)
(Vi)
(vii)
(vii)

(ix)

(x)

If you do not work hard, you will repent.

Jamini wil be rewarded if and only if he is punctual.

If there is a will, there is a way.

Time and tide waits for none.

29 is a prime number which is a sum oftwo squares.

Life is short, but virtue is lasting.

If the boy is poor, then he will be hungry and if he is hungry, then he cannot be honest.

A year consists of twelve months while a month does not consist of more than thrityone
days.

I[f the government cannot solve the unemployment problem, then public opinion will rise
against it which will lead to a strengthening of opposition.

Chinu and Minu went to Calcutta, but Minu came back earlier since she lost all her
money.
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27 ¢

8. Let p, g r denote respectively the statements : “you are honest™, “you are laborious™ and “you
will receive a promotion”. Translate the following statements into English language :

1N (pvqg) —>r

(i) ~r—>~p

() ~@vqg —>~r
() [rv(=pl->~gq

(V) pAgAr
9. Construct truth tables for the following and indicate which of these are tautologies :
) pAg-opvyg @ pAg—p
(i) pAp—>g9—>q (v) p—>pAg
V) po(~p—>9q) VM)  ~pAPAg)—>q
(Vi) (pv~q)A(gv ~p) (vii)  p—> (~q A7)
(X @—->9->g>nN->@->r)] x) pvgo~@PAg)
x) (—>~p)—>~p i) (~pvp)>(~qvq)
xii) ((p Ag) >p)—>q xv) @ePA@Ger)>@Eor)

) [p>@vdl->Ilg—> @Al
10. Ifp has truth value T, what can be said about the truth values of
() ~pAqg >pvq
(i) pvg—>-~pAg
11. Determine the truth values of p «<» ~ q when the biconditional p <> ¢ has truth value (i) F, (i)) T

12. State the converse, inverse and contrapositive of each of the following propositions, stating it
as a conditional, wherever necessary.

(1) IfABC isequilateral, then its three angles are congruent.

() IfGopalis clever, then he is rich.

(i) p—>~q

(iv) Sum oftwo odd integers is even.

(v) The square of an integer is a natural number.

(vi) A paralellogram which is inscribed in a circle is a rectangle.
(vii) The ground being wet, there has been rainfall at night.

13.  Are the following pair of statements negation of each ather ?
)  The number 7 is not a rational number.
The number 7 is not an irrational number.
ii)  The number 7 is a rational number.

The number 7 is an irrational number.
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14, Write the component statement ofthe following compound statements and check whether the
compound statement is true or false.
) 24 ismultiple of4 and 6
i) The schoolis closed if there is a holiday or a sunday.
i) 7 is anrational number or an irrational number.
v) 57 1s divisible by 2 or 3.
v)  All things have two eyes and two legs.
vi) 2 1isaneven number and a prime number.
vi) Everyparallelogramis a trapezium or a rhombus.
15.  Identity the Quantifiers of the following statements.
1)  There exists anumber which is equal to its square.
ii)  For every real number x, x is less than x+1
i) There exists a capital for every state of India.
iv) For all xeR, sin’x + cos*x=1
v)  There exists an even prime number other than 2.
vi) For every negative interger x, x* is also a negative integer.
vii) For every real number x, x*#x.
16.  Write the negation of following statement :
1)  Every living person is not 150 year old.
i)  There exists xeN, x+3=10
i)  Allthe students completed their homework.
iv)  There exists anumber which is equal to its square.
v)  For every real number x, x+4 is greater than x.
vi) Everyone who lives in India is an Indian.
1.9 Validity of Statements

A Statement is said to be valid or invalid according as it is true or false.

So validating a statement is the process of showing it to be true.

This depends upon which of the connectives, modifiers or quantifiers are used in the statement.

i)

Validity of statement with ‘AND’
Steps To validate paq,
Step-1 Show statement ‘p’ is true

Step-2 Show statement ‘q’ is true
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iii)

Validity of statement with ‘or’

Case-1 : Assuming that is false, show that g must be true
Case-2 : Assuming that q is false, show that p must be true.
Validity of statement with “If .............. then”

Ifp and q are two mathematical statements, then to show ‘r: if p then q’ is true, we
can adopt any of the following methods :

a) Direct Method : Assume p is true and show q is true ic p=q.
b) Contrapositive Method : Assume ~q is truc and show ~p is true i¢ ~q=>~p.

¢) Contradiction Method : Assume that p is true and q is false and obtain a contradiction
from assumption.

d) By giving a counter example : In mathematics, counter examples are used to disprove
the statement : ie to prove the given statement r is false we give a counter example.
Consider the following statement. “r: All prime numbers are odd™. Now the statement
‘r’ is false as 2 is both prime and even number.

Validity of the statement with “Ifand only if”.

If p and q are two statements

then to show the statement “r : p if and only if q is true, we proceed as follows :
Step-1 : Show if p is true then q is true.

Step-2 : Show if q is true then p is true.

Example-7

Given below are two statements

p: 25 isamultiple of 5

q: 25 is amultiple of 8

Write the compound statements connecting these two statements with ‘and’ and ‘or’. In both

Solution :

i

cases check the validity of the compound statement.

By using connective “and”, the compound statement is “25 is multiple of 5 and 8.

We know that 25 is a multiple of 5. So, the statement p is true but “25 is a multiple of 8 is false i.¢
the statement q is false.

Hence the compound statement pAq is false.
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i) By using connective ‘or’ the compound statement is “25 is multiple of 5 or 8.

Since the statement “p’ is true and the statement ‘q’ 1s false, the compound statement
pvq is true.

Example-8
Show that the statement

p : “If x is a real number such that x* + x = 07 then x = 0 is true, by (i) Direct method (i)
method of contradiction and (iii) method of contrapositive.

Solution :
Let q are 1 be the statements given by
q : x is a real number such that x*+x =0
r:xis0
Thenp: Ifq, thenr.
1) Direct Method : Let q be true
= x is a real number such that x*+x =0
= x is a real number such that x(x*+1) =0
=>x=0(--x€eR, so x*+1= 0)
= ris true.
Thus q is true = r is true. Hence p is true.
ii) Method of contrapositive: Let ‘r’ be not true. then,
ris not true
=>x#0, xeR
= x (x™+1) 20, xeR
= q is not true
Example-9
By giving counter example, show that the following statement is false.
Ifnis a odd integer, then n is prime.
Solution :

It is in the form “if p then q””. We have to show that this is false. To show this we look for an
odd integer n which is not a prime number. 9 is one such number. So n=9 is a counter example. Thus
we conclude that the given statement is false.
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Example-10
Check the validity of the statement
“The integer n is odd iff n* is odd”
Solution :
Let p and q be the statements given by
p : the integer n is odd.
q: n*is odd.
The given statement is “p if and any if q”.
In order to check its validity, we have to show the validity of the following statements.
Step-1: “Ifp, thenq”
Step-2 : “Ifq, thenp™
Step-1 : “Ifp then q” is given by
Ifnis an odd integer then n’ is odd™
Let us assume that n is odd. Then,
n=2m+ 1, me Z
=n=2m+ 1)
=>n=4m@m+1)+1
=n?is odd. (- 4m (m+1) is even)
Thus, n is odd then n? is odd.
- “Ifpthenq™ is true.
Step-2 : ‘If g then p”’is given by
Ifn?is odd then n is odd.

To check the validity of this statement, we will use contrapositive method. So, let ‘n” be an
even integer.

=>n=2k, fork e Z

= n? = 4k>

=> n” is an even integer

= n’ is not an odd integer.

Thus, n is not odd = n?is not odd :
- “If q thenp” is true.

Hence, from step-1 and step-2, we conclude that “p ifand only if ™ is true.
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Exercises- 1 (b)
1. Check the validity of the following statements.
1) p : 100 is a multiple of 5 and 4.
i) q : 125 1s amultiple if 5 and 7.
i) r : 60 is a multiple of 3 or 5.
2. Check the validity of the statements given below by the method given against each.
1)  “The sum of an irrational number and a rational number is irrational” (by contradiction
method).
ii)  “Ifnis arecal number withn>3, then n?>> 9 (by method of contradiction).
m) “If x, y are integers such that xy is odd then both x and y are odd” (by method of
contrapositive)
iv) “Ifxisaninteger and x? is even then x is also even” (method of contrapositive)
3. By giving counter examples, show that the following statements are not true :
1)  Ifmeasures of all the angles of a triangle are equal, then the triangle is an obtuse angled
triangle.
ii) For everyreal number x and y, x*=y* = x=y.
iii) The equation x*-1=0 does not have any root lying between 0 and 2.
4. Check the validity of “If I do not work, I sleep.
IfTam worried, I will not sleep. There fore, if I am worried, T will work™.
5. Let a and b be integers. By the law of contrapositive prove that if ab is even then either a is

evenorbiseven:



(CHAPTER 2)

Sets

No one can expel us from the paradise which Cantor has created for us.
- Hilbert

2.1 Sets:

Mathematics is understood to be the science of numbers, magnitude and forms, but its
scope has so vastly expanded that this sort of definition is hardly comprehensive enough to
characterise mathematics. Its scope has been expanded to such an extent that two branches of
mathematics do not appear to be having anything in common. This has grown to the absurd
limit ofresembling the assertions ofthe fabled seven blind men who were set on describing
what an elephant is like. Could mathematics be looked at more organically ? Indeed, it has
been demonstrated that such a scheme of putting mathematics on a common footing is possible.
As mentioned in section 1.0, earliest attempts in this direction were made by G. Cantor. Cantor's
theory of sets was subject to severe criticism because of certain contradictions that were
observed to have crept into his theory, by Russel, Burali- forti and many others. However,
logicians and mathematicians of the early twentieth century were luckily able to sort out the
anomalies in Cantor's methods and salvage the central theme ofhis ideas that were about to be
consigned to oblivion. As it is beyond our present scope and objective to embark upon a
formal theory of sets, we do not make any such attempt here and start with a rather informal
approach.

The word ‘set’ and other similar words are frequently used in our day-to-day vocabulary,
such as a set of cards, a pack of wolves, a swarm of bees, a bunch ofkeys, a shoal of fish,
a herd of cattle, a pride of lions, a flock of sheep, a group of children and so on. Such
phrases express the common notion of ‘set’, but experience shows that any attempt to produce
technical definitions of each and every word of our vocabulary is bound to be futile. Indeed, if
we look up at the meaning of a word in the dictionary, we find it composed of certain words
which are, in turn, explained in terms of certain other words. The process, when continued
indefinitely tends to be ultimately circular, since our vocabulary is finite. [t follows that in
every scheme oflogical construction, there ought to be certain primitive or undefined words
in terms of which every other concept of the system can be explained. In our present treatment
of sets, we take ‘set’ as an undefined term. Mathematicians like John Von Neumann attempted
to define the word ‘set’ in terms ofan undefined term ‘class’ and a number of whole books
have been written on the subject, but we do not wish to dwel upon those here. We shall be
primarily concerned with sets of specific and well defined objects.

Thus, the undefined word ‘set’ is informally understood here as a definite collection of
well defined objects which are called its elements (or members). By this, we mean that
given an object x and a set A, it is possible to state exclusively if x is an element of A or it is
not. In addition, ifx, y are given elements of a certain given set, it is possible to state exclusively
ifx =y orifx=y. Asanexample, let A denote the collection of all small letters in the English
alphabet. Ifx denotes the natural number 1, thenx is not an element of A and secondly, any
two letters of the alphabet are seen to be distinct. Thus, Ais a set.
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It is natural to call two sets A and B equal if they have the same clements and we then
write A= B.

We may describe a set by specifying its elements. This is done in two ways. One way is
to enlist or enumerate all its clements. In that case we usually write all the elements, separated
by commas and enclosed within braces. For example, the set representing the English (that is,
Roman) alphabet can be written as

{a, b, c,d e f g hijklmnopaqrnstiuVvWwXx)y z}

Similarly, {1, 2,3, 4, 5} represents the set consisting of the natural numbers 1,2, 3,4, 5
(and only these). The following are also examples of sets.

{a, *,0}, {@a=,0,F, { &, ¢.3,06, g

Observe that there is apparently no restriction as to which objects can be put
together in a list to form a set, but if there are too many elements in a set, this method
may not be convenient or even practicable. If we want to express the set of Indian citizen
in a tabular form, the task would be stupendous. Even when we are able to write names
of 500 Indian citizens on one page of a standard crown size book, one would need about
1800,000 pages (amounting to 3600 books, each consisting of 500 pages). The reader
can easily construct examples of sets, describing each by a list which is impractical. To
circumvent this, we have another way of describing a set, that is by devising a criterion
to decide if a given object is an element of the set in question, or not. Thus, we may write
the set of all Indian citizens simply as

{ x . x is an Indian national }
(we are not concerned in this context as to how Indian citizenship is to be determined).

Similarly, the set of natural numbers and the set of integers can be expressed respectivelyas
{n : nis a natural number}.

{n : nis an integer }.
We can, however, express the set of natural numbers and integers also in a list by writing
respectively {0, 1, 2, 3, ...... 1,

{ovn—3,-2,-1,0,1,2,3, ...}

Remark As usual

denotes the set of positive natural numbers. Since 0 is a natural number (see Chapter 4),
we may write N* to denote the set of all natural numbers; that is,

N*={0,1,2,........ }

Note that in the above case, we have mentioned only some of the elements explicity
and have used dots in place of others. This is because we can never exhaust all the
clements by explicit writing, however hard we may try. In our previous example of the set of
Indian citizens, one could at least, in principle, write down the complete list of elements, ignoring
the time constraint and other factors. In case of naturalnumbers and integers, this is not possible
since to any list of natural numbers or integers, a new natural number or integer could be
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added, that is not there already. This is beacuse of the presence of an ‘infinity’ ofelements in
these, a concept to which we shall return later.

Nevertheless, we have now seen that an ‘infinite” can at times be expressed by a list,
provides that the elements that are explicitly mentioned, must clearly indicate which other
elements are there in the list.

Expressing a set by a list of all its elements is called defining (or describing) a set by
extension (or by tabular method) whereas expressing a set by a criterion (or rule) which
decides its membership, is called defining the set by intention (or by set builder method or
by method of specification). To define a set by intention, a proposition p(x) involving x (since
x is a variable, it is customary to call p (x) a propositional variable) is to be found such that
p (x) has truth value T for and only for elements x of A. We call p (x), the defining property
of Aand write A= {x : p(x) }.

Under this scheme, the set representing the English alphabet can be written as

{x : x is a letter of the English alphabet}
Some further examples are :
{n : nis an integer}, {n : nis a natural number},
{x - x is a student studying in Ravenshaw college during 1997} and so on.

The reader should construct an example of a set that can be expressed through
different defining properties.. A set may also be expressed by a list as well as by a defining
property as in case of the set {3, 6, 9} which can also writtenas {3k:k=1,2,3} or {x:
x=3o0orx=6o0rx =9}

Since a set is specified by its elements the order in which the elements are
listed in a tabular form is immaterial. For instance, {a, b, ¢,} = {b, ¢, a,} = {c, a, b} etc

If A is given set and x is a given object, we write

x € A (read as x belong to A) if x is an element of A, and

x ¢ A (read as x does not belongs to A) if x is not an element of A.

For technical reasons, we talk of a set having no elements. Indeed, if p(x) denotes
a proposition which is false for every x to which it applies, such as "x = x", then p(x)
defines the set {x : p (x)} which has no element. We call this set the empty (or null) sct
and write it as ¢ . Note that the empty set is unique since the membership relation is well
defined in this case.

Warning : Before embarking upon the study of sets, a word of 'caution' is due. We
must not suppose that every property about objects defines a set. Unrestricted use of
defining properties may lead to contradictions. For instance, consider the property

p(X): X ¢X.

Nothing looks unusual about such a property. Many sets have this property; for instance, a
book contains pages, but is not a page by itself; a library consists of books, but it is not a book

and so on. Now suppose that this property defines the set R = {X: X ¢ X}. It must be possible
to determine if R € R or R ¢ R. However, if R € R, then the defining property of R implies that
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2.2

R ¢ R which contradicts the supposition that R € R. Similarly, the supposition R ¢ R' confers
on R the right to be an element of R, again leading to a contradiction. The only plausible
conclusion is that the property "X ¢ X" cannot define a set. This contradiction is the essence of
the famous Russell's paradox.

In order to avoid this paradox, we may have to always ensure that any set that we talk
about, is not a member of itself. It is also convenient to choose a 'largest' set in any given
context, called the universal set and confine our studies to elements of the universal set only.
This set may vary in different contexts, but in a given setup, the universal set should be so
specified that no occasion arises, ever to digress from it. Otherwise, there is every danger of
colliding with paradoxes such as the Russell's paradox. We shall return to this topic later.

Subset and Power set
We now come to some basic concepts about set.

Definition :

Let A, B be sets. We say that A is a subset of B, or B is a superset of A and write
AcB(orBoA)
if every element of A is an element of B; thatis,x e A= x € B.

Example 1 :

The following are some examples of subsets.
() The set N of positive natural numbers is a subset of the set Z of integers.
(i) Let Adenote the set ofall animals and M stands for the set of all mammals.
Then M c A.
(i) Let Abe the English alphabet and V denote the set of vowels init. Then V c A.

(iv) Let C be the set of articles in Indian constitution and F denote the set of articles in it

about fundamental rights. Then F = C.

Examples can be multiplied indefinitely. Definition of subsets implies that every set A is
a subset of itself. IfA — B and B contains at least one element that is not in A (so that A= B),
we call Aa proper subset of B. Thus, B is not a proper subset ofitself. The set {1, 2, 3)isa
proper subset of {1, 2, 3, 4).

Definition of subset implies that the empty set ¢ is a subset of every set. Indeed, the
subset criterion is vacuously fulfilled by ¢ in the sense that there is no element in ¢ to contradict
it.

We also note that two sets A and B are equal if and only if A < B and B c A. This
property of sets is called the property of extension. This important property is often
used to prove the equality of sets. For example, consider the sets :

A={n:neZandnz=0},
B = {n : »n is a natural number}

Since every nonnegative integer is a natural number, A B and since every natural number
is nonnegative integer, B c A. Hence A=B.

The following properties are easily deducible, where X, Y, Z are sets.
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) X=Yo[xeXoxeY]

i X=X

i) X=Y=Y =X

(iv) IfX=YandY=Z, thenX=Z
v) IfXcYandYcZ thenXcZ

IfA, B are sets and A is not a subset of B, then Amust have atleast one element which
is not in B. We write A z B to express this fact.

If A is any set, the collection of all its subsets is another set which we call the power set
of A and denote it by P (A). Some examples are cited below.

Example 2 :
@ A=4¢,PA)={¢}
() A={a},P(A)= {¢,A}
() A={a, b}, P(A) = {9, {a}, {b},A}
(d) Aisanyset, P(A)={B:BcA}

EXERCISES 2 (a)
1. Construct five different examples of sets. Describe each with the help of a proposition.
2. Give an example of a set which has exactly 10 elements and express it through a defining
property.
3. Is it possible to express every set through a defining property ? Justify your answer.

4. If {x: p,(x)} = {x : p, (¥)}, show for each x, p, (x) and p, (x) have the same truth value.

5. For each of the following words, write down the set of letters forming that word :
(1) Administration, (ii) Misrepresentation, (iii)) Mathematics,

(iv) Concurrence, (v) Demonstration.

6. State with reason, which of the following are sets and which are not :
(1) All big rivers of India.
(i) All natural numbers having at least one prime factor.
(ii1) All sincere students of Ravenshaw College during the academic year 1998-99.
(iv) All real numbers with negative square.
(v) All citizens of India earning more than Rs. 10,000/- per month.
(vi) Allcollege teachers who are citizens of India.
(vii)  All finite subsets of the set Z of integers.
(viii) Collection ofall sets.

(x) Collection ofall winged horses.
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(x) Collection of all residents of Orissa who will live for more than 100 years.
7. Write the following sets in the form of lists :
(1 {x:x isaprime number and 1 <x < 100)
(i) {x:xisanodd integer}
() {x:x=lorx=2o0rx=23}
(iv)  {x :x can be written as a sum of two odd integers}
(v) set ofall natural numbers that are divisible by 5.
8. Write the following sets in the intention (or specification) form :
@ {a} m ¢ @ {1, 2}
wv) {1,2,3,4,5} () P(¢) vi)  {1,3,9,27}
9. Determine if the set A is a proper subset of the set B where A and B are as given below.
i A={1,2,3, ... )
B = {x : x is a rational number}
(i) A= {x:xisaprime number}
B={2n-1:n=1,2,3,..}
)y A={-1,1,3}
B={x:xeRand x*-2x*—x+2=0}
(iv) A={1,2,3,4}
B = {n e N :nisadiviser of 60}
10.  For each of the following pairs of sets A, B, determine if Ac BorAz B :
) A=4¢,B=1{¢}
(i) A= {x:xisaninteger},
B = {3x:xisaninteger}
(i) A= {x:xisanoddinteger},
B = {x: xisreal and not an even integer}
(iv) A= {x:xisaninteger which is both even and odd},
B = {x : xis an integer and x = x}
) A={a,b,c}.B={{a}, {b}, {c}}
11.  Determine the truth of falsity of the following propositions with reasons :

@ {1,2}e{l,2,3}
(b) AcAforanysetA
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12.

13.
14.

15.

(¢) Every set has a proper subset.
(d) Everyset is a proper subset of the same set.

(¢) For any object x, there is a set A such that x € A.

(f) For every object x, there is a set A such that, x ¢ A.

(g) IfA, B, Care sets, then either A=BorAcBorB cA.

W ae{{a}}

1) ace {{a, b}, b}, a=h.

(j) IfAisapropersubset of B and B is a subset of C, then A a is proper subset of C.
(k) Ac¢ifand only ifA=¢.
Write down the power set of :

() {a,b,cy (i) {a, {a}} (i) ¢ (iv) {¢} (V) {a,{a},{a, b}}, (vi) {{0}}
Prove that P(A) c P(B) ifand only if A c B. When is the inclusion P(A) c P(B) proper ?
A set can be finite or infinite (as understood in an informal way). For instance, {1,2,3,4} is
a finite set whereas Z is an infinite set. The number of elements ofa set A, denoted by |A], is

called its cardinal number. Without going into the necessary technicalities, we may just observe
that

0] =0, [{x,, X, 5 coreernene x | =n.

Two sets A and B are called similar if they have the same cardinal number. Thus, the sets {1,
2,3} and {2, 4, 6} are similar. We write A~ B to express the fact that A and B are similar.
Now, answer the following questions.

(i What are the cardinal numbers of the following sets ?
{9}, {a.{a.b}}, {Z}, {0,5}, {0,{5}}, {a, b, {a, b}, {{d}}, {$.{0}}
(i) For any natural number n, give an example of a set A such that [A| =n.

(i) Determine the cardinal number of the set {x : xisrealand x* —x*+x—-1=0}

Which of the following sets are finite and which are infinite ?
(1 The set N ofpositive natural numbers
(i) The set Z of integers
(i) The set Q ofrational numbers
(iv) The set R of real numbers
(v) The set of prime numbers
(vi) The set of even integers
(vii) The set of human beings
(vii) The set of integers less than 10
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16.  Verify that

P ()] =2°

P ({a})|=2"

P ({a, b})|=2

P ({a, b, c})|=2°
17.  Find the number of elements of :

@ P®@) @  PEE@)) @  PEEEPO))
18. Prove by method of induction that if A has » elements, then

[P(A) =2"

19. Can you say how many elements P(P(A)) has if A has » elements ?
2.3 Operations with sets, Venn diagrams

Out of given sets, new sets can be formed in various ways. Subsets and power set are
some examples. More examples are provided by set operations to which we turn now.

To understand the complex properties of sets and their mutual relations, diagramatical
representations of sets were introduced by Venn in 1880, popularly called Venn diagrams.
Venn's method of presenting sets through diagrams is indeed an extension of an earlier one
introduced by Euler in 1770. Euler used circular regions to denote domains of terms in a given
proposition. In a Venn diagram, a set is represented by the points of a region bounded by a
simple closed curve. Circles and rectangles are often employed. A subset is represented by a
subregion (see figure 9) and an outer rectangular boundary may be used to denote the universal
set (also called the universe of discourse) as in figure 10.

A

Venn diagrams provide beautiful visual aids to understand set operations and associated
properties. These diagrams possess no power of proof and are sometimes inadequate to
express a situation such as that of the empty set, but their role as a tool to understand complex
situation must be recognized.



| Sets 33|

Union :

Suppose that a broadcasting organization seeks to announce in English and in Hindi. So
they look for announcers who can speak English and those who can speak Hindi. IfE denotes
the set of candidates speaking English and H denotes the set of candidates speaking Hindi,
then any one from the set E and similarly everyone from the set H can be a candidate for the
job of announcer for the broadcasting organization. This new set of candidates is called the
union ofthe sets E and H and is written as E U H whose elements are those candidates who
can speak either English or Hindi or both. We are now led to the following definition.

Definition. If A, B are sets, then their union, denoted by A u B, is the set
AUuB={x:xeAorxeB}

Since the sets A, B can have common elelments, the word 'or' within the bracket above is used
in the 'inclusive’ sense which means that A U B consists of all those elements x that belong to
at least onec of the sets A, B and it can very well belong to both A and B. This interpretation of
the word 'or' will be throughout adhered to unless otherwise specified.

The concept of union can be illustrated through Venn diagram (see figure 11). The shaded
region in each case represents A U B.

(1 (i) (i)
AUB
AuUB AuB

Example 3
(1,2} U {2,3,4}=1{1,2, 3,4}
(12,35 o {{1,2},{2},3} = {1, 2,3, {1, 2}, {2}}
Z={x:xisaneveninteger} v { x : x is an odd integer}
Facts : We note the following easily provable properties, where A, B, C are any sets :

(a) AuA=A(Law ofidempotence of union)
(b) A u¢=A (Law of identity)
(¢) AuB=BuA (Commutative property)

(d AcB=AuCcBuC
In particular Ac Au C for any C,
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(¢) AuB=BifandonlyifAcB
H AuBulC)=(AuB)uC (Associative property).

A proofof property (f) will be given in a later section. Properties (¢) and (f) enable us
to write A u B U C unambiguously for the union of three sets (and that of more sets similarly or
by induction). One way of proving (c) (also (f)) is by using properties of logical disjunction.
We shall, however, give a different proofof (/).

Intersection

Consider a situation in which an examination is conducted on two subjects, say,
mathematics and physics. A candidate has to qualify in both the subjects in order to pass the
examination. If P = {x : x has passed in physics} and M = {x : x has passed in mathematics},
then the set of persons who have qualified in the examination is (x:x has passed in both
mathematics and physics} = {x : x € M and x € P} This last set is called the intersection of
the sets M and P and we write it as M ~ P. This prompts us to make the following definition.

Definition : IfA, B are sets, then their intersection, denoted by AnB, is the set
ArB={x:x e€Aand x € B}

Thus, A~B is the set of all those elements which are common to both the sets A and B.
It may happen that two sets A and B have no common elements that is, A~ B = ¢. We then say
that A and B are disjoint (or non overlapping).

In figure 12 below, intersection is expressed through Venn diagrams by shaded regions.

0] (ii) (i)
A B A B A
-
AnB B
AnB=0o A~ B

In figurel2(i) and figure 12(iii) the shaded regions represent A~ B, But figure 12(i1)
corresponds to the case in which, A, B are disjoint, so that A~B=4¢.

Example 4
(i) {0,1,2,3,4}~{1,5,6}={1}
@ {1,3}n{2,4}=¢
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(i) {13~ {(D} =9
Facts : The following properties are easily proved :
MWANA=A (DA n¢=¢(li) AnBcA, AnBcB,
(ivy AnB= AifandonlyitAcB, (v)AnB=BnA
In addition, the associative law and the distributive laws also hold. We shall prove the last
two laws in section 1.13 .
As in case of union, intersection can be extended to more than two sets.
Difference, Symmetric difference

IfA, B are sets, it is sometimes required to consider elements of A that arenot in B. A
new set is formed thereby which we denote by A\ B (or A—B) and indeed

A\B={x:xeAandx ¢ B)

The set B \ A can be similarly defined. Such sets are called difference sets. The symmetric
difference oftwo scts. A, B, denoted by A AB, is defined to be the set

AAB=(A\B)u(B\A)

A Venn diagramatic representation of difference and symmetric difference is shown in figure
13.

(i) (i) (ii)

In the example of selection of announcers for a broadcasting organization if E and H
denote the sets of candidates speaking English and Hindi respectively, then E \ H is the set of
candidates speaking English but not Hindi and E A H denotes the set of candidates who can
speak either English or Hindi, but not both.

As yet another example Z — N is the set ofnon positive integers. The following properties
are easily verified.

(i) AUB= (AAB) U(ANB)
(i)AAA=¢ ,AAB=BAA
Earlier, while talking about paradoxes in set theory, we talked of the necessity of a universal

set in a given context. This is ofien necessary to avoid trivialities in arguments. For instance,
when we are talking about prime numbers we obviously confine ourselves to the set of integers.

No one makes a statement like “+/2 is not a prime number . Similarly, when one talks about
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a sct of non- Oriyas, ong is certainly talking in the context of human beings at least. Or, when
someone makes a statement like “none but Gandhi could do such a feat”, he or she is obviously
talking in the context of human beings. Here the set of human beings can be taken as the
universe of discourse. In the earlier example about prime numbers, the set of integers, or
even the set of natural numbers can be taken to be the universal set.

[fUis our universal set in a particular context and A — U, the difference U\ Ais called
the complement of A (withrespect to U). We denote it by A' or A®. In general, A\ B is called
the (relative) complement of B with respect to A. However, the symbol A' is used only for
the complement of A with respect to the universal set. The following facts are obvious :

i) ¢'=U,U'=¢ ()AUA'=U,ANA'=¢
(i) (A=A (ivvAcB<e B'cA’ (v) A\AB=ANB’

2.4 Further results about sets

It was pointed out in section 1.12 that union and intersection are commutative set
operations, in the sense that

AuB=BuUA AnB=BnrnA

for all sets A, B. The proofs are casy consequences of definitions and the commutative
properties of disjunction and conjunction of statements. We employ the commutative
properties without mention. Next we take up proofs of associative and distributive
properties of union and intersection in a direct manner. The following facts which are
easy to prove, turn out to be helpful in those proofs. For all sets A, B, we have

AcAuUuB,AnBcA (1)
AcB=AuUB=B,AnB=A (2)
BcAandCcA=BuCcAand

similarly Ac BandAcC=AcBnC 3)
BcC=AUBcAUC,AnBcANnC 4)

THEOREM 1 : IfA, B, C are sets, then

i AuB)uC=Au (B uC) (Associativity of union)

(i) (AnB)nC=An (B~ C) (Associativity of intersection)
(i) AuB O =(AuB)n(AuC) (Distributive property)
(iv) An(BuC)= (AnB)u (An C) (Distributive property)

Proof : The above identities are results of the form U=V, where U, V are sets. It is convenient to

show that U = V and V < U in each case, whence the conclusion follows.
(i) Wehave
(AuB)uCc(AuB)U(BuUC() (by (1) and (2)
cl[AuBulO)]uBul) (by 4)
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(i)

(i)

cAu(Bu(O) (by 2)
= AuB)uCcAu(BuUC(O)

and conversely

AuBul c(AuB)uBuUQ) (by 4)
c[(AuB)uClu(BuUO) (by 4)
=(AuB)uC (by 4 and 2)

This proves (i)

AnNnB)NnCo>(AnB)n(BnO) (by4)
S[An(BNC)]~(BAC) (by4)
=An(B~C) (by 2)

=ANnB)nCoAn(BnC)
The proofofAn (B nC) o (AnB) n Cis similar.
AuBnC)cAuB (by4)and similarly Ao (BN C)cAuC
=2AuBnC)c(AuB)n(AuC) (by3)
On the other hand, suppose that
x € (AUB) N (AUC) (5)
IfxeA, thenx e AuBuCC).if x ¢ A, then (5) implies that x e B ~ C
=x € Au (B nC). Hence (5) implies that x e A u (B n C), that is,
AUB)N(AuC)cAu(BnO)
the proof of (iii) is complete
Proofof (iv) is similar and left to the reader.

An interesting feature of the above theorem is that (ii) and (iv) are obtained from (i) and

(1i1) respectively by interchanging U and~ . We can call (i) and (ii) dual theorems ofeach
other and similarly (iii) and (iv) are duals of each other. The results contained in theorem 2
below, called De-Morgan's laws, provide another instance of duality.

THEOREM 2 :

(M)
(i)

IfA, B are sets, then
(AuB)'=A'"nB’
(AnB)'=A'UB’

Proof (i) we have

AcAuB=(AuB)' cA’
and similarly, (AuB)" < B’, Hence (Au B)' < A'n B’

Conversely, x eA'nB'=x¢ Aandx ¢ B
=2>x¢gAuB=xe (AUuB)’
=A'"nB’' c(AuB)’
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This completes the proof of (1)

Taking A=A"and B=B"in (i), we have
(A)'n(B)'=(A"uB)
=AnB=(A'"uB"’

= (AnB)'=((A'uB)")'=A"UB,

which proves (ii) and the proof of the theorem is complete.

Alternative Proof of De Morgan's Laws
Proof. (i) x e (AuB)’

<x ¢ (AuB)

sxeAandx ¢B (- ~(pvqQ=~pA~qQ

< x eA’ and x €B’

< x eA'nB’

(i) xe(AnB)’

= x ¢(AnB)

oxeAorxeB (- ~(pAQ=~pVv~Qq)

oxeA'orx eB’

s xeA'uUB’

De Morgan's laws can be extended to any finite number of sets, by induction (it is also
true for and infinite collection of sets which will not concern us here). These results are also
true when complements are replaced by relative complements. For instance, the following is
true when, X, A, B arc any sets.

X- (AUuB)=(X-A) n(X-B)

X-(AnB)=(X-A)u (X-B)

To prove the first one, for instance, we have

X—-(AuB)=Xn(AuUB)’

=Xn(A'nB) (by Thereom 2)

=(XnX)n(A'~B"

= (X nA") n(X nB") (by associativity and commutativity of m)

=(X-A)n(X-B)

De Morgan's laws can be illustrated as follows. Let A and B denote respectively the sets
of pecople who play cricket and tennis. Then (Au B)'denotes the set of people who do not
play either game and that is precisely the set of people common to the set A'of people not
playing cricket and the set B’ of people not playing tennis, so that (Au B)'= A’~B’. Similarly,
(A nB)'canbe illustrated.

We can now prove :
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Example S :

Proof:
(1)

(i) A~ (BAC) = (AN B) A (ANC)
(i) AAB = (AUB) — (A " B)

xe An (B AC)

<xeAandx e BAC

oxeAand (x eBandx ¢ Corx € C and x ¢B)

< (xeAandx eB and x ¢C) or (x cAand x € C and x ¢ B)
S(xeAnBandx ¢ (AnC)) or (x e An Cand x ¢(An B))
S xe(AnB)—-(AnC)or(xe(AnC)-(AnB))
cxe(AnB)AANC)

Note that in the third step of the proof we used the logical formula

(i)

pA@@vr)=@Ag)v(p Ar)

when p, g, r are statements. Also in the fifth step of the proof we have used
xg(AnB)exgAorxeB.

and since already it is given that x € A, we have in this case
xe¢(AnB)<=x ¢B.

xe(AuB)—- (AnB)

sxe(AuB)andx ¢ (A~ B)

< x e(AuB)and (x ¢A orx ¢ B)

< (xe Aorx eB)and (x ¢A or x ¢B)

=[x eAand (x eA orx ¢B)]

or [x e Band (x ¢ A orx ¢ B)]

< (x eAand xg B) or (x € B and x ¢A)

oxeA-BorxeB-A

oxe(A-B)u(B-A)

<xeAAB

Note that in the fifth step of the proof we have used the logical formula

(Pva) AV s) = [ pA (v s) v g A (rvs)]

This completes the proof.

Example 6 : Show that

Proof:

HA-(Bu(C)=(A-B)-C
MHANB)-C=An(B-0)

HDxeA-BuUO

ox eAand (x ¢ Bu O)
<xeAand(x ¢ Bandx ¢ C)
< (xeAand x ¢ B) and x ¢C
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oxe(A-B)andx ¢ C
<xe(A-B)-C
Hence
A-Bu(C) =(A-B)-C
i xe(AnB)-C
< (x €A andx eB) and x ¢C
oxeAand (x eBand x ¢ C)
sxeAn(B-0)

Example 7 : Show that

Proof :
n
x eB— _U] A

i I

n
<xeBandx ¢ _UIA.
',_ I
@xeBandxeAi for each i
& X e B—Ar_for each i

H

S XE "'“] (B-A)
i= 1

2.5 Cardinality of finite sets
We now consider another significant fact about finite sets. It can be informally seen that if
Aand B are two finite sets that are disjoint, then the number of elements in A U B is precisely
the sum of the number of elements of A and that of B, that is,
|AUB|=|A| + |B|sinccAnB=¢ (6)
What happens if A, B are not disjoint ?
The answer is simple since
AuB=(A\B)uUB.
Since the sets A\ B and B are disjoint,
|A U B|=|A\B|+ |B|, by (6)
and since A is the disjoint union of A\ B and An B,
|A| = |A\B|+ |An B]
so that finally
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|AUB|=|A\B |+ B|

=|A[-|AnB|+[B|

= |A|+|B| —|AB| (7)
This result can be extended to three or more finite sets by repeated application of (7).

Example 8 :

Suppose that a class consists of a set S of 100 students, 70 of which pass in geometry
and 60 pass in algebra. If no one failed in both the subjects, can we determine the number
of students who passed in both algebra and geometry ?

We proceed like this. Let A and B denote respectively the sets of students who passed
in algebra and in geometry. As per given information

IS| =100, |A| =60, |B|] =70,S=A UB.

Here A ~ B denotes the set of students who passed in both algebra and geometry. By (7)
we have

S| =[A] + [B] - |[A ~ B|
that is,

100 =60 + 70 — |A ~B|

= |An B| =130 - 100 = 30.

EXERCISES 2 (b)

1.  Anexamination was conducted in Physics, Chemistry and Mathematics. If P, C, M denote
respectively the sets of students who passed in Physics, in Chemistry and in Mathematics,
express the following sets using union, intersection and difference symbols.

(a) Set of candidates who passed in mathematics and chemistry, but not in physics;
(b) Set of candidates who passed in all the three subjects;
(c) Set of candidates who passed in mathematics only;
(d) Set of candidates who failed in mathematics, but passed in at least one subject.
(e) Set of candidates who passed in at least two subjects;
(f) Set of candidates who failed in one subject only.
2. What can you say about the sets A, Bif (i) Au B=¢ (ii)) AAB=¢ (iii)) A\ B =¢,
(iv) AAB=A, (v) A nB=U, where U is universal set, (vi) AAB=U ?
3.  Are difference and symmetric difference commutative ? Give reasons.

4. IfB cC, isit true that A\ B=A\ C ? Is this result true when difference is replaced by
symmetric difference ? Give reason.
5. Prove the following :
i AVB\C=A\O\B=A\(BuUO
(i) AnBulO)=(AnB)U(An(C)
() AABAC)= (AAB)AC
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(ivy AcBeB' cA'<A' UB=U
< B'n A=¢, where U is the universal set.
v) AuB=UandAnB=¢=B=A'
(viy AuB=AforallA=B=¢
6.  Prove all the results of the sections 1.13 and 1.14, that are stated without proof.
7. Provg that
U N
1= i=1
A-"B=""(A-B)
n n
n bt
A-"'B=""(A-B)
Hint : Prove for » =2 and apply induction.
8. Prove that
[AoBuUC|=|A]|+B|+|C/|+*|AnBNC|—|AnB|-BNC|—|CnA]
9. IfXandY are two sets such that XY has 20 objects, X has 10 objects and Y has 15 objects;
how many objects does XY have ?
10. Ina group of450 people, 300 can speak Hindi and 250 can speak English. How many people
can speak both Hindi and English ?
11. Inagroup of people, 37 like coffee, 52 like tea and each person in the group likes at least one
ofthe two drinks. 19 people like both tea and coffee, how many people are in the group ?
12. Inaclass of 35 students, each student likes to play either cricket or hockey. 24 students like to
play cricket and 5 students like to play both the games; how many students play hockey ?
13. Inaclass 0f400 students, 100 were listed as taking apple juice, 150 as taking orange juice and
75 were listed as taking both apple as well as orange juice. Find how many students were
taking neither apple juice nor orange juice ?
14. 1Ina group of 65 people, 40 like cricket, 10 like both cricket and tennis. How many like tennis
only and not cricket ? How many like tennis ?
15. Inasurvey it was found that 21 people liked product A, 26 liked product B and 29 liked

product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people
liked products B and C and 8 liked all the three products. Find how many liked products C
only.
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(i)

(i)

It is true that a mathematician, who is not somewhat of a poet, will

never be a perfect mathematician.
- Weierstrass

Introduction

Among various kinds of relations we are familiar with, father, son, brother, sister, husband,
wife are a few common examples. Let us try to see how we use the terms. We say Dasaratha
is father of Rama. Similarly Babur is father of Humayun and Janaka is father of Sita etc. Here
the statement "Dasaratha is father of Rama" is but an example of fatherhood. But what then
constitutes fatherhood ? We may say that fatherhood is collection of all the Pairs like Dasaratha
and Rama, Babur and Humayun, Janaka and Sita etc. But they are just not pairs. We can not
interchange the position of Dasaratha and Rama and say "Rama is father of Dasaratha". This
would make things ridiculus. If we just say "Dasaratha is the father" it is incomplete if we do
not mention of Rama at all. So what is important is a pair of names in a definite order such
as (Dasaratha, Rama). Such relations involving pair are called binary relations. Thus a certain
collection of ordered pairs stands for a definite binary relation as in this case. The ordered
pairs (Dasaratha, Rama), (Babur, Humayun), (Janaka, Sita) are examples of ordered relation
of fatherhood. So fatherhood would stand for a certain collection of ordered pairs of human
beings (provided that the set of human beings is the universal set under consideration). So is
the relation of brotherhood, sonhood, sisterhood etc. But in each case they are different
collections of ordered pairs of human beings.

Before we go to define the term binary relation formally, we define some basic terms.
Ordered Pairs :

If {a, b} is a set consisting of the elements a, b (a, may be equal to b), it is called a pair. It we
specify a to be the first component and 4 to be the second component, then we call {a, b} an
ordered pair and write it as (a, D).
In general, (a, ) is different from (b, a). Two ordered pairs (a, b), (¢, d) are said to be
equal that is, (a, b) = (¢, d) ifand only if @ = ¢, b =d. For example (a,0)=(2-1)<=a=2,b=-1
We now define the cartesian product (also called product simply) of two sets.

Cartesian Product:

Definition :

IfA, B are non-empty sets, then their cartesian product, denoted by A x B, is defined to be

the set

AxB={(a b):aecA, beB}
For example A={2,3}, B={a,b,c} = AX B = {(2.a), (2,b), (2.¢), (3.a), (3,b). (3,¢)}.
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Notethat AXB=B XA
The word ‘cartesian’ carries with it reminiscences of the two- dimensional plane, also
called the cartesian plane after Rene Descartes which is just the product R X R, where R
denotes the set ofreal numbers.
If1is the closed interval [0, 1] 1 —
onR, thenl >< [ is a square, N\&
as shown in figure the figure.
0 1
The concept of an ordered pair can be analogously extended to ordered »- tuples of
the form (x, x,,......x ) and so the product A| x A, *....... x A of the n nonempty sets A ,
A,......A canbe casily defined. The product R x R xR =R?isour familiar three dimensional
space
It is easy to observe that if A and B are two sets such that |A|=mand | B|=n, mand
n being nonnegative integers, | A X B |=mn.
By convention, the product A XA X... XA =¢ifand only if at least one of the
component sets is the empty set ¢ .
Example1 :
(i) LetA={a b, c} B={1,2},thenAxB={(a, 1), (a,2), (b, 1), (b,2), (c, 1), (c,2)}
(i) LetA={x, y}, thenAxA={(x, x), (x,y), (v, x), (", »}
(@) ¢xA=¢p (iv)yRxR={x»):xeR yeR}
In the above example (i) one may notice that (a, 1) €A x B, but (1, a) ¢A x B.
Thus in general (x, y) =(y, x) that is why (x, y) is called an ordered pair. Thus if (x, y)= (7, s),
then we must havex =7, y = .
Sometimes we write A X A as A?. It is evident that if (x, y) €A% Then (y, x) A%
Now we prove some simple results regarding product.
Example 2 :

Let A, B, C be sets. Then
D AxBnO=(AxB)n(AxC) @(AxBul)=AxB)u((AxC(C)
Proof:
(x,») e Ax(BnC)
oxeA,yeBnC
oxeA,yeBandy e C
oxeAyeBand(x e A,y e C)
o, y)eAxBand (x, y) e Ax C
X,y e(AxB)n(AxO)
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Hence Ax(BnC)=(AxB)n(Ax ()

The proof of (ii) is similar and is left to the reader.

EXERCISES 3 (a)

1.  Compute the product A x B when
i) A={0}=B (ii) A={a, b},B=1{a,b,c} (i) A=ZB=9¢

2. If|A]=m, |B|=n, what can you say about :
(i) |AxB| @i  [P(A) xP(B)|

3. Findx, yif
i) (»=(32 (@ G+yD=x) @@ Q@x+y 1)=(x2x+3y)

4. IfAxB=B xAthen what can you say aboutAand B ?
|AxB| =6.1f(-1,y), (1, x), (0, y) are in Ax B,
Write the other elements in Ax B, where x #y.

3.2 Relations

We first observe that a binary relation expresses a certain link between two objects such

as 'x is father of y' or 'x is employer of )" or 'x is equal to y' etc. In certain cases x and y can not
be interchanged without altering the nature of the relationship as in the case of x is father of ',
Thus the pair (x, ) must be considered as an ordered pair and not just pair. Of course in the
case 'xis equal to y, the role of x and y can be interchanged without affecting the relationship.
The totality of all such ordered pairs defines a particular relation since an ordered pair is not
included in this totality if and only if it does not satisfy the relation. A relation can thus be

considered as a set of ordered pairs (x, y) where x and y are taken from two specified sets A
and B respectively (which may be identical at times.)

Now we have the following
Definition :

Let Aand B be two arbitrary sets. A binary relation from (or on) A to B is a subset
of A x B.

IfA=B, fis called relation on A. If (x, y) €/, we often write this as x/) and say that x is
related to y through /. Sometimes instead of /, we can use R for relation and write xRy if (x,
y) € R.

Remark:

Since ¢ c A x B, ¢ is a relation from A to B. Also, asAx Bc Ax B, Ax Bisalso a
relation from A to B.
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If H=set of all human beings
M = set of all men
W = set of all women,

then fatherhood is a certain subset of M x H, brotherhood is certain other subset of M x H,
where as motherhood is a subset of W x H. So if = M x H stands for the fatherhood relation,
then (a, b) € fmeans that a is father of ». Similarly if f = M x H be the brotherhood relation,
then (a, b) € f= a is brother of b. (Note that a is brother of » need not imply that b is brother
ofa .b could be sister of a). A sonhood relation is yet another subset of M x H.

Ramark:

We shall confine our attention to binary relation only. Of course there are other relations
which are not binary. Just as for defining binary relations we take the subsets of cartesian
product of two sets, similarly for defining other relations, involving three, four or more elements,
we have to take the subsets of the cartesian products of concerned three, four or many sets. In
what follows, arelation shall always mean binary relations unless otherwise stated. The sets of
integers, rational numbers and real numbers will be denoted by Z, Q, R respectively.

We now take up more technical details of binary relations

Domain, Codomain and Range of a relation:

Definitions :

Let fc A x B, that is, let /'be a relation from A to B. Then the domain of f'written as
domfor D ’ is defined by

domf (or D)={xe A:(x,y) e fforsomey e B};

The set B is called the codomain off.

the range of /, written as rngf" (or R)={yeB:(xy) e f forsome x € A};

the inverse of /, written as /' " isarelation from B to A defined by

S0y ef)

It is obvious that the domain of /'is a subset of A and range of fis a subset of B. It is also
clear that the /'is a subset of B and range of /'is a subset of A.

nn nn

Like father, mother, brother, sister we have also relations like " less than", "equal to", "similar

nn nn

to", "congruent to",

non

parallel to", "perpendicular to" etc.

We explain the above ideas in the following examples.
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Example 3 :

Let A= {Dasaratha, Rama, Laxman, Sita, Janaka, Humayun, Akbar}. Take B=A. Then
the relation of fatherhood on A is given by

R, = {(Dasaratha, Rama), (Dasaratha, Laxman), (Janaka, Sita), (Humayun, Akbar)}; the
daughterhood relation is given by R, = {(Sita, Janaka)} ;

the brotherhood relation is R, = {(Rama, Laxman), (Laxman, Rama)},
the sonhood relation is R, = {(Rama, Dasaratha), (Laxman, Dasaratha), (Akbar, Humayun)},
Also dom R = {Dasaratha, Janaka, Humayun},
rngR = {Rama, Laxman, Sita, Akbar},
R ' =(inverse of R ) = {(Rama, Dasaratha), (Laxman, Dasaratha), (Sita, Janaka), (Akbar,
Humayun)},
domR, = {Sita},
rng R = {Janaka},
R -'= {(Janaka, Sita)}
dom R, = {Rama, Laxman},
rng R, = {Laxman, Rama} = dom R,
R = {(Laxman, Rama), (Rama, Laxman)} =R,
dom R, = {Rama, Laxman, Akbar }
rng R, = {Dasaratha, Humayun}
R, ' ={(Dasaratha, Rama), (Dasaratha, Laxman), (Humayun, Akbar)}.
Example 4 :
(i) LetA=B=1{1,2,3,4,5}andletf={(x,y) e AxB:x=y}
Then, /= {(1, 1), (2, 2), (3, 3), (4,4), (5, 5)
domf=rgf=A
f=r"
(i) LetA={1,2,3},B=1{2,3,4}Letf={(x,y) eAxB:x<y}
g={(x,y) e AxB:x>y}
Then f= {(1, 2), (1, 3),(1,4),(2,3),(2,4), (3,4}
domf ={1,2,3} =A
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rng f=1{2,3,4}, =B
ST=R D), G0, (3. 1), (3.2) (4,2), (4,3))
g=1(,2);

Example 5 :
LetA=B=Randf= {(x,y) cAxB:x*+)y*=1}
Then dom f=[-1, 1] =rngf,f= [

Example 6 :

1
LetA=B=Rand letf= {(x:y) iy = ;}

Then dom f= rngf =R— {0} andf= [
Example 7 :

Let A=B=Randlet/={(x,y) e AxB:y*=x}

The domf={x e R:x>0}

rmng =R
ST =, ) oy =x%), dony ! =R, mgf ' ={y |y =0}

Diagramatic representation of a relation

Arelation between elements of a set A and the elements of a set B can be represented

by a diagram as follows :

Represent the elements of A and B as points in the plane by drawing the Venn diagrams.

If (a, b) €f, draw a line connecting @ and » with an arrow pointing in the direction of5. The

collection of all such lines with arrow head shall represent the relation /. For example if A=

{a, b, ¢, d}, B= {a, p,y} then the relation {(a, ), (a,B) (c,y)} is pictorially represented as

follows :

The following picture represents arelation from C= {1, 2, 3,4} to D=C given by {(1,

2), (1,3),(1,4),(2,3),(2,4), 3, 4}
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One-many, many -one, one- one relations

If for the relationfc Ax B (a,b) €f, (a, b')e fand b #b’ then we say that the relation
/fis one-many. In case ofa one- many relation, there shall be more than one line from a single
element of A to more than one element of B.

A relation /' A x B is called many-one if (a, b) € /', (a',b) € fand a = a'; and a
relation f'is called One-One if (a, b) €/, (a, b )ef = b =10’

and (a,b) e/, (@', b) ef=a=2a
In a way, a one-one relation is neither many -one nor one- many.

For example, fatherhood clearly is a one- many relation whereas sonhood is a many- one
relation. Brotherhood is both one-many and many-one. Husbandhood or wifehood (if there is
no polygamy nor polyandry) is a one-one relation.

Less than is both one-many and many one. Equality is clearly one- one. Similarity of
triangles is a one- many and many-one relation.

EXERCISES 3 (b)
1. LetA={a,b,c} ,B={1,2}

(a) Determine all the relations from A to B and determine the domain, range and inverse of
cach relation.

(b) Determine all the relations from B to A.
(c) Isthere any relation which is both a relation from A to B and from B to A ? How many ?

(d) Ofall the relations from A to B, identify which relations are many-one, one-many and
one-one and represent these diagramatically.

2. Are the following sets relations :

(1) ¢fromAtoB (ii) AxB from Ato B
(i) Ax¢fromAto ¢ (ivy ¢xBfrom¢ptoB
V) ¢x ¢ from¢pto ¢ (vi) ¢xCfromAtoB

(vi) ¢ x ¢ from A to B
Determine the domain, range and inverse of each of the relations mentioned above.
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3.  Express the following relations on A to B in each case in tabular form :
(i) A={neN:n<l10},B=N
S ={(, ) e AxBy=x%
(i) A=B=R
S =AGy) ¥ty =land|x—y =1}
(i) A={1,2,3,4,},B={1,2,3,4,5}
J=A{(x,y):2 divides 3x + y}

4. A and B are nonempty sets such that |A| =m, |B| = n. How many relations can be defined from
Ato B ? (Remember that the number of relations is the number of subsets of AXB).

5. Give an example of a relation f'such that

(1) domf=rngf (i) domf crngf
(i) dom f>rngf ) Sof'=¢
W f=s M) SnfT=d

6. LetR= {(a, d) |aisaprime number less than 10}

Find (i) R, (ii) dom R, (iii) rngR, (iv) R, (v) dom R, (vi) rngR™.
7. LetA={1,2,3,4,6} and Let R be arelationon A

defined by

R = {(a,b)| adivides b}

Find (i) R, (ii)) domR, (iii) rngR, (iv) R, (v) domR™, (vi) rngR".

3.3 Functions

Someone defined mathematics as the study of sets and functions. However brief, the
definition conveys the importance of functions in mathematics in the least number of words.
Relations and functions are amongst examples of words chosen from day-to-day vocabulary
that have acquired deep mathematical significance. Curiously enough, their technical meaning
is not very far apart from the common usage. This point of view is evident from the examples
that we have already considered for relation and that we shall consider for function in the
present section.

The significance of the concept of function has been realized since antiquity, but it was the
great mathematician Leibnitz (1647—-1716), one of the inventors of calculus, who is credited to
have coined the word function in 1694.

The functional notation f{x) was invented by Euler in 1734. Thinking of the immense
simplification that these inventions brought subsequently to mathematics it is difficult to
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overemphasize their ingenuity. Yet this was inevitable. The vast upsurge ofanalytic ideas that
swept the realm of mathematics during the last two centuries, could never possibly have broken
the shores, without the function concept and an appropriate symbol for it.

A relation, as defined in the previous section, does not exclude the possibility that a given
clement can be associated with several elements at the same time. For example, a mother can
have several children, an integer can have several divisors, a polygon has several vartices and
so on. On the otherhand there are relations in which a given element is associated with exactly
one element as in case of the child-mother relationship, a real number and its square, a circle
and its centre and many others. Then latter type of relations are examples of some important
special types of relations called 'function’ which are largely responsible for the vast application
of mathematics to various branches ofhuman knowledge.

We now formulate the definition of function in precise mathematical terms.

Definition :

Arelation ffrom X to Y is called a "function' ifit satisfies the following two conditions :

(1) Df:domfZX (ii) (x,y)efand (x,z) e f =y ==z
Thus a function from (on) X to Y is a relation whose domain is the whole of X and is not
one-many.

Some ofthe English synonyms for the word function are :
mapping, map, transformation, transform, operator, correspondence.

Iff/cX xYis afunction, we often write thisas /: X > Y or X 7 Y. and say that fisa
function from X to Y, or on X to Y or /maps X into Y.

If (x, y) € f, then we write y = f(x)

and say that y is the value of the function at x or the image ofx under /. Observe that there

can be no ambiguity in writing f(x) because it is impossible to have more than one value for
f(x) for a given x in X, by the definition of function. Thus a functionf: X —»Y is known if we
know the element f(x) in Y for every x € X. That is why sometimes a functionf: X — Y is
defined by a rule : y = f(x) which associates to every xeX, a unique clement f{x) €Y. We
shall soonrealise that a great simplification is achieved by writing the function in the above
functional relation.

Since a function is primarily a relation the definitions of domain, codomain and range ofa
function are similar to those ofa relation.

The set Y is called co-domain of /. It is evident that R =rng (f) €Y and this inclusion
may be proper as in the case of the function {(n, »’) : n € Z}

For any subset A of X, the image of A under f'is the set f(A) = {f(x) : x €A} and for any B
CY, the pre-image of B is the set /' (B) = {x eX : f(x) eB}
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The range of fis defined by
R = rng(f) = f(X) = the set of all images of elements of X under /.
Diagramatic Representation of a function:

The concepts of a function discussed above are diagramatically represented below:

Y
[ XY @

By varying x over X, we determine f{x) for each x € X and so the functionf: X ->Y can
also be written as

S=A{k f(0)): x e X}
and x is called the variable.

Before we go over the deeper aspects of functions, we take some examples.

7 ®)

Example 8 :

(i) Suppose we are observing the position of a particle moving in a straight line. We know
that at every instant of time 7 the particle has a unique position on the line. If we agree
that every point of a straightline corresponding to a real number with some convenient
point on it, representing the real number 0, then the position ofthe particle on the line at
time 7 is represented by the real number x (). We observe that with motion of time, for
every time £, there is one and only one position represented by x(7) as we do not expect
the particle to be occupying two different positions at the same time (nothing prevents,
though, the particle from occupying the same position at two different times). Suppose
the time is represented by real numbers, 0 being a certain time deemed as the present
time, then all time of future is represented by the positive real numbers and the past by
the negative real numbers. Then the position of particle moving in a straight line is, in fact,
a function

x:R->R
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(i)

(iii)

which associates the position x(7) to the time /.

Look at the railway time table. It records time when the train arrives at a station and
departs from the station. We can look upon this as a function whose domain consists of
union of these disjoint intervals of time and the range consists of certain cities where the
train stops. Thus for every time in the mentioned interval we have a city where the train
is.

The table does not say anything about the train's position at a time after its departure
from a station and before its arrival at the next. This does not disqualify it to be a function
if we take its domain to be the union ofinterval of time depicting the time ofarrival and
departure at a certion station. However if you look at the left ofthe column where names
of the cities appear, you would find some numbers. They are the distances of the cities
recorded fromthe station from which the train started. Thus the time table also records
the distances ofthe train from the stations of its starting at certain times. Though it does
not record the distance of the train at a time when it is between two cities, it is definitely
at some distance from the starting station at every moment of time. So a railway time
table may be thought of as a record of values of a function at certain times showing the
distance of the train, at that time, from the station of starting. This obviously does not
show the distance at every moment of time as it is quite impossible to do so since there
are infinitely many points of time between departure time ofthe train from a station and
arrival time at the next station. Thus a time table to be deemed as a recording function,
the distance at various times really does not specify the function completely but gives it
values at certain times indicating the function.

The motion ofa particle is well described if we know its position 7 () at any given time
f. So if R? represents the three dimensional space and R the time, then the motion of a
particle is described by a function.

r:R—>R?

It is possible that a particle can be at the same point at two different times, but never at
two different positions at any given time.

It is also sometimes useful to know the function by an explicit relationship like

1
s(t) = ut +5 ar’

which tells the distance covered by a particle in time #. This is not to suggest that we are
always lucky in having such an analytic expression of the value ofthe functioninterms of
its argument or variables. Often we do not know and it becomes a problem of theoretical
physics to predict such a relationship. It was the genius of Galileo who gave the law of
falling bodies :

1
s(h)= E el
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(iv)

V)

(Vi)

(vi)

(ix)

Example 9

assuming of course that the gravity does not vary and there is no air resistance. We have
in fact, a rule which tells us where the particle would be at which time.

This surely represents a function. However we are not so lucky to have a neat formula
like this which would tell the distance of the train from the station of'its starting at a given
time as discussed in (ii).

The Doordarsan morning news on a particular day tells us the temperature of four
metros recorded at 5.30 a.m. on that day. This is an example of a function with domain
the metros and range the real numbers quantifying the temperatures (Surely a city can
not have two different temperatures at the same time on the same day.)

Look at your college time table. What does it record on a particular day ? It records the
subjects to be taught at different times of the day. So the time table can be considered as
a function whose domain is the set of periods and the range is the set of subjects of your
combination.

The rate chart with the postmaster where for a definite weight, a definite postage is
shown is an example of a function (which is known as post office function) ;p =/ (w).
(p meaning postage for the mail of weight w).

We know the solubility of a salt varies with temperature. So the relation which associates
to every temperature a definite solubility is a function of temperature.

Price list in a shop indicates the list of prices for each item at a particular time. An item
does not have two different prices at the same time, in the same shop. We may deem it as
a function whose domain consists of different items and the range their prices.

Let Adenote a set of individuals and B be the set of their respective mothers (supposed
alive). If for everyx € A, M (x) denote, the mother of x, then M defines a function from
A to B. Thus the child-mother relationship is a function, whereas the mother-child relation
cannot be a function as a mother may have more than one child.

In the above examples we considered some cases of functions which arise in nature
and in life situations. Many such functions emerge from every aspect of human activities
and scientific knowledge. The association of a country with its capital, a circle with its
radius, a triangle with its area, the marks secured by a student in a particular paper, the
score ofaplayer in a particular match, the height of an individual, the distance of a city
from the capital and billions of similar instances are examples of functions. Now we take
up some typical examples from mathematics.

Let A= {1,2,3,4,5}, B={a,b,c}
consider f/={(1,a), (2,b), (3,b), (4,a), (5.b)}
Obviously f, — Ax B
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Here dom f = {1,2,3.4,5} =A
Codomain of f/, = {a,b,c} =B
rng f, = {a,b} B
Moreover every element of A has a unique image in B, Hence f, is a function from A to B.

Now for the above sets A and B consider
S, =A(Lb), (2,a), (3.¢), (5,a)}
and f,={(La), (2,b), (3,a), (4,b), (5,¢), (1,0)}

Here /) is not a function from A to B since dom/, = {1,2,3,5} #A as the clement 4
of Ahas no image in B.

Also f;is not a function from A to B since the element 1€ A has two different images viz.
a and c, i.e. two different ordered pairs (1,a) and (1,c) in /'have the same first component.

Example 10 :

Let /: N—>Nbe defined by /'(n) =2n, neN, Then every element of N has its unique image in
N. So fis a function from N to N. Clearly /(1) = 2, f(2)= 4, f/(3)=6 and so on.

Here dom /=N = codomain of f'and rngf= {2,4,6,...} which is a subset of N.
3.4 Real valued functions and their graphs

A function f: A — B where B — R is called a real valued function or simply a real
function. Thus when f': 4 — B is areal function, for x € A, there exists a unique y € B, such that y
= f'(x), the image of x under /.

In the following we shall consider real valued functions when domf=AcR.
Determination of Domain and Range of a Real Function

It has already been mentioned previously that a function is also a relation and the defination of
domain and range ofa relation also apply to those of a function.

Let /- A— B where A and B are subsets of R.
Then
(1) dom /=D, = A, (i) Codomain of /= B, (iii) rng/= flA) = B

Areal function /- A— B is very often defined by a rule that expresses the imagey € B
in terms of’its pre-image x € A.

1
For example y=2x, y=x?+1, y= e real functions without explicitly mentioning

their domains.
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In such cases, to determine the domain of a function we find the maximal set (union of
all such sets) on which y = f(x) has a meaningful expression. For example y = f(x) = 2x and y = f{(x)

1
= x*+ 1 arc defined for all x € R. On the otherhand f{x) = " is not defined for x = 0. Hence the

1
maximal set for which f(x) = M’ turns out to be R - {0}. The maximal sct for which a function f(x)

is defined is called its ‘natural domain’ or simply the ‘domain’ of /.
Determination of range ofreal functions in simple cases can be done with ease, but it takes
some effort in general.

The knowledge of graph is useful for determining range. Before we discuss graphs, we take up
few examples.

Example- 11

1
Find the domain of f(x) =x + ﬁ

Solution :
Observe that % cannot be defined when x <0. Hence f'is defined for all x € R except
x <0.
Thus, domf=R-(-0,0]={x e R|x>0} =R"
Example - 12

What is the domain ofthe function

J(x)=

x2=3x+2
Solution :
X
The function m is not defined when the denominator x*- 3x +2 =0
Now
x2-3x+2 =0

= x-1)(x-2)=0
=>x=1or2
Thus the domain ofthis function is R-{1,2}.

Example - 13

Find the domain and range ofthe following functions:
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1
(/0 ==, (i) fx)=1-

Solution :

(1) f(x) =

1— x?
Clearly f'is not defined when 1-x*=0.
Now l-x*=0=x=%1

Sodomyf =R- {-1, 1}

—=x=1+,/1-—

Also: y :f(x) = 1_x2 y

Clearly x is defined when

1
1_; >0,ie. wheny<Oory=>1,

. Rangeoff/ ={yeR|y<O0ory>1} =(-,0) U [l, )

i S)=1-x2
Here f is defined if 1-x*>0,
orif-1<x<1
Sodomf=][-1,1]

2

1—x°

=y =1x =>x=%1-)°

So x is defined when 1-)? >0, i.e. when)?< 1,i.e. -1 <y <1

. rngf=[0,1]
Graphs

Lety =

Most of the elementary real functions we shall discuss have one distinctive feature that they can

be depicted graphically and are often better understood by studying their properties as reflected inthe
respective graphs to be defined shortly.

We are aware of the fact that every ordered pair (a, b) of real numbers corresponds to a unique

point of the Cartesial plane and vice versa. This enables us to define the graph of certain functions as
follows :
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Definition

Letf:A— R, where Ac R. Then the set

G = {(x,f(x)) | x € dom/} is called graph of /. Note that the graph of /'corresponds to a set of
points on the Cartesian plane.

The relation between a functionf : A— R and the graph is analogous to that between R and
the corresponding number line.

The graph ofa relation can be similarly defined as the set of points in the plane corresponding
to its elements. Certain familiar curves in geometry such as the circles

C={@y) i +y =r}
arise in this way. Obviously C is not given by a function since both (x, y) and (x, —y) are in it,
whenever x* + )2 =2,

[t is sometimes, but not always possible to plot a graph geometrically. The characteristic
function XQ of the set of rationals in R does not possess a geometrically constructible
graph. Such graphical construction, whenever possible, is an important method ofrepresenting a
function.

For most of the elementary real functions which include polynomial, trigonometric functions
and their inverses, exponential and logarithmic functions, their various algebraic combinations and
compositions, graphical constructions are generally possible. The task may, however, be quite
cumbersome at times and necessitates good knowledge of calculus, geometry and computational
techniques.

Just as it is not always possible to plot a graph, it may not be possible to reconstruct a relation
from a geometrical curve, but the graph conveys, almost invariably, a picture of the inverse. We shall
elaborate upon this in due course.

How to plot a graph

In order to plot a graph, the following elementary devices may prove to be of use, particularly
in case of elementary functions.

(a) Compute a reasonable number of functional values and look particularly for points at which
the graph meets the co-ordinate axes. If 0 € D, then (o, {(0)), is the point at which it meets
the Y—axis and if 0 € R, the solutions of f (x) = 0 give points at which it meets the X - axis.
Note that the graph ofa function meets the Y - axis at most once while it may meet the X-axis
several times. (why ?)

(b) Caremay be taken to detect points at which the graph shows a particular tendency such as
rising upward, stooping downward and so on. Besides calculus, elementary techniques also
work at times.

(¢) Theline of symmetry, if any, may be detected so that the complete graph can be known by
a knowledge of only one side.

(d) The points on the graph, thus obtained may be plotted and then joined in free hand by a
smooth curve.
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Some real functions and their graphs.
Example 14
Constant function :

A functionf: A — R is said to be a constant function if these is a real number k such that f (x) =k,
forallx e A.

Here domf=Ac R, rngf= {k} which is a singleton.

1 1
The functionf= {(0,1), (2, 1), (-5 ,1)} 1sa constant function with domain {0, />, "3 } and range

.
The graph of the constant function f(x) = 3, x € R is the line p~allel to x - axis as shown:
AY
y=3
<
v
Example 15 X X X
Identity Function : V'

For any nonempty set A < R the function f/: A— Adefined by /'(x) =x “rallx € Ais called the
identity function on A. It is denoted by id,.

For the identity function /, dom /' =rng /. i o ‘
The graph ofid, on Ac R is part of the straight line /
through the origin as shown. e
X 10 A X
(Here A is supposed to be an interval o7 g
as shown in the figure.) Y
Example 16
Polymonial function :
Afunctionf: A— R defined by
S(x)=a,+ax +a,x’+ . +ax", where nis a nonnegative integer and a, a,, ..., a_are real

constants with a_# 0, is called a polynominal function or simply @ polynomial of degree n.

2x +3, 1+x%, x°- x2+2, x*+x are examples of polynominals of degree 1,2,3 and 4 respectively and
they are respectively called linear, quadratic, cubic and biquadratic polynomials.

A polynomial f'(x) is defined for allrealx € AcR.
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Consider the quadratic polynomial function f{x) =y =x (x—1). We plot five points on it as

per the following table :

1 _
X02121
1

It is noted that
(a) visnegative and decreases fromx =0 to

x= 1 and then increases till its meets the

L

( 1,9

NGO f0,0)

(1)

2
X - axis.
(b) It passes through (2, 2) and rises steadily. ‘.
(c) yispositive for negative x, passes through X € f

(-1, 2) and rises steadily as shown in the
figure. The resulting graph is a parabola.
Example 17
Rational function :

X +1

Thy i =———
e function f (x) 1

X

p(x)
example of a rational function. In general a function f(x)= % , where p (x) and q (x) are polynomials

with q (x) # 0 for all x € domy; is called a rational function.

Example 18

Modulus function :

The modulus function /: R — R is defined by f(x) =| x| = {

The modulus function is also known as absolute value function. Its domain is R and range is

R'U{0} ={xeR|x >0}.
The graph of y=| x| consists of two rays as shown in figure.
Y

X' X

Yf

)

\!(yn‘

x(xz0)
—x(x<0) -

2%

is the quotient of two polynomial functions. Such a function is an
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Example 19

X x#0)

The Signum function on R is defined by sgn x= ||
0 =0)

The range of sgn x is {~1, 0, 1}. b
From the definition of sgn x if follows th i‘
(s,n

(1) x=]|x|sgnxwhenx=0.

W

The graph of sgn x is as shown : X' & y¥,
@)

N
£
i

~

_
1

Example 20
Exponential function :
An exponential function is defined by f(x) =a* (a> 0, a # 1), x € R. The fact that ¢* exists
for everyx e R whenever a > 0 follows from the theory of real numbers. The following properties
can also be proved.
@ aY=adad,a>0
(@Y =a",x,yeR
(b) a*=1iffx=0
(¢ Ifa>1,a>aiffx>y.
(d Ifa<l, thena*>a iffx<y
It follows that the exponential function as
defined above is one - to - one and
monotonic (increasing or decreasing
accordingasa>lora<1).

X

() a*iscloser tothe X - axis as x recedes away from zero along negative values.

The graph of/(x) =y =2~is shown in Graphs of y = 3%, y=4~efc. can be similarly plotted,
but the growth is so rapid that for even for a value like a =4, the graph connot be accommodated
on the space provided here forx >2.

A comparision with the graphs of y=x* or y=x* will show that 2* grows much more rapidly
than x? or x° or indeed than x* for any ».

Itis clear that dom /=R and rng/=R".

Example 21
Logarithmic function
The function /' defined by /' (x) = log x, (@> 0, a= 1) where y=log x <> a”=xis called
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the logarithmic fimction to the base a .
Here domlog =R*, g log =R.

Properties of logarithmic function which can be casily derived from definition are given below:

@) log, (xy)=log x+logy

(i) log (x/) =log x—logy

(i) log x=0=x=1

(iv) log x=1

(v) logx=1/log a, x=1

(v) log x=log x.log b.

(viiy Ifa>1,logx>log yiffx>y

andifa <1, log x<log yiffx>y

@<

log, x
log, y

The accompanying figures show the graphs oflog x for a >1 and a < I respectively. Both the
graphs meet the x- axis at (1, 0) and never meet the y- axis.

(viii) =log,x. (y=1)

Example 22

Greatest Integer function
The function f defined by /' (x) =] x |

Where [ x | is the greatest integer not greater than x (less than or equal to x) is called the
greatest integer function.

From the difinition if follows that ifn is an integer,

[x]=nforn<x<n+1
It is clear from definition that (i) dom/=R , (ii) mg /=7

Y
0if0 < x < 1 . 4
Sofy [ x]= 11 <x<2 2 1 L
21f2 < x < 3andsoon. 1 1an e
1 ¢
and rr L L
. xo A5 T o I 23 > X
—1if-1<x<0 1-1) —&-1 (0.1
2if -2 <x < -1 2 a9 1-2
3if -3 <x < =2 andsoon —e 1.3

(33 (23 gy
The graph of y=f(x) =[x | is plotted above

The graph consists of infinitely many closed open parallel line segments
This graph looks like steps.
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Note that the greatest integer function is a step function with jumps at integral points.
3.5 Different categories of functions

We have discused examples of some real functions. In mathematics we often categorise numbers,
sets, matrices etc. into different types (e.g. rational, irrational, finite, infinite etc.) for the sake of companison
and ease of systematic study. Similarly we also have some categories of functions.

It is worth mention that these categories are not exclusive. A particular function may come in more
than one categories.

(i) Algebraic functions

A function which can be generated by a variable by a finite number of algebraic operations
such as addition, subtraction, multiplication, division, square, square root ctc. is called an
algebraic function : Polynomial function, the rational function (the function which is obtained
as the ratio oftwo polynomial functions such as

Zax+1

x3 +2x2 +x +5

are algebraic functions; so also are the functions of the type

1
Va2 +x 1 (x +2)5 @+, 2x+ 1) ete,

(i1) Transcendental functions

All functions which are not algebraic are called transcendental functions. Examples of such
functions are given below.

(a) Trigonometric function :
sine: R—[-1, 1]
cosine: R —>[-1, 1]
tangent : R' >R Where R'=R— {(2n+1) T :neZ}

cotangent : R" > Rwhere R"=R - {nn:neZ}
secant : R'—> R
cosecant : R"->R

The above trigonometric functions are abbreviated as sin, cos, tan, cot, sec and cosec
respectively. Note that the domains of tan, cot, sec and cosec could not be all of R but
a truncated R

(b) Inverse Trigonometric functions
These functions shall come up in Vol-II.

(c) Exponential functions

Functions of the type ¢, a >0 and a #1, e etc are called exponential functions. More
generally functions ofthe type x*™, (cos x )!°%* are also transcendental.
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(d) Logarithmic functions
Functions such as logax, log_(1+x). etc.

(¢) Irrational powers of positive real numbers such as xﬁ etc.
Exponential and logarithmic functions will be discussed later.

We have already discused exponential and logarithimic functions while discusing graphs.
(iii) Odd and Even Functions

A function /s called odd if / (—x) = —f(x) and it is called even if /{—x) =f(x) forallx € D,.
Since sin (—6) = —sin 6 and cos (—6) =cos 0, it follows that sine is an odd and cosine is an even
function. The functions

S =x,
S x) =x7,
Jx) =x> +xf+x6

are examples of even functions. The functions

fx) =x,
[ =,
fo) =x 4 ¥
arc examples of odd functions. Whether a function has to be cither even or odd ? Consider
f(x) =x+x°

which is neither odd nor even. Similarly the functions
f(x) = cos x + sin x,
S = e
are neither odd nor even.
‘What about the constant function
fx)=a?
Itis even. Itis also odd ifa=0
Iff is a real function, then the function

g(x) _ f(x) ‘;f(—X)

is an even function and
hep= L/
is an odd function (verify this).

Sincef(x) — f()C) ‘;f(—X) + f(x) _Zf(_x) :g (x) + h(x)
it follows that every function can be written as the sum of an odd and an even function.
(iv) Periodic Functions

A function fis called periodic with period &k if /' (x + &) = f(x) for some constant k= 0. The least
positive value of & for which f(x + k) = f{x) holds is called the Fundamental period of /. If kis a period
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off, then any non zero integral multiple ofx is also a period of / (prove).
Periods of trigonometric functions shall be discussed in detail in chapter-4 (Art. 4.3)

It can be shown that if (v + k) = f(x) then flax + b) = £ (a (x+- ) + b) which shows that / (ax +
b) is also periodic with period £ /a.

Example : f(x)= x - [x] is periodic with period 1.
3.6 Algebra ofreal value functions

We have been familiar with examples of functions. In fact mathematics has an inexhaustive
stock of a vast variety of functions. It is also possible to obtain many more functions by combining the
known ones in various ways. For instance, the algebraic combinations sucn as f+g, fg, f/g, | | and
the composition fog give rise to new functions.

Before taking up definitions of addition, subtraction etc. of functions, let us first define equality
of two functions.

Equality : If/, and /, are two relations on X to Y, then they are called equal if they are equal as
subsets of X x Y. When applied to functions, this means that two functions /;, f, : X — Yare equal

(written as f, = /) if {(x, /,(x)) : x € X} = {(x, [, (x)) : x € X}
that is,
J,(x) = 1, (x) for each x € X, Note that domf, domf,

Though the co-domain Y does not occur explicitly in the definition of equality, it must be
understood that the co-domain is the same for both the functions. If co-domains for f, and £
are different, then even iff (x) = f,(x) for all x € X, then the functions are treated as different.
For example if f, : R - R, f, : R = R" {0} are difined by /| (x) = x?, f, (x) = x?, then even
thoughf, (x) =/, (x), x € R, they represent two different functions.

Also the two function g :R' -5 R, g,: R —» R defined by g, (x) =x%, g, (x)= x*are
different as their domains are different even if their functional values are same.

Thus in the definition of equality of functions /; and f; it must be understood that /, (x) =
f, (x), x edomf , provided that dom f, = domf, and co-domain of f/, = co-domain of /] .

The reason for this definition will be clear when we discuss inverse funcitons later.
Now we come to our main objective, the algebra of real valued functions.

Definition :
Let f, g: X > R. Then
() the addition of two functions, written as /'+ g is defined by

(f+8) () =/x) +gx), (x € X)
(i)  the multiplication fg is defined by (f2) (x) =f(x) g(x), (x € X)
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X,
_g(x R X provided that g(x) 0.
Warning : In order that the addition (so also the subtraction), multiplication, quotient of two functions

are meaningful, it is necessary that

f(x)
(iii) The quotient f7g is defined by (f7g) (x) =

(a) the domains of all participating functions should be same (or at least should have non-
empty intersection on which functions are defined), i.e. if ;A —>Randg: B —>R

then f+g : AnB —» R ; provided A~ B # ¢ and the same restrictions apply for f-g, f' g
and —.

(b) (b) the co-domain must be endowed with additive and multiplicative structure which
should be closed with respect to these structures.

For example, for the functions

f:10, 1] - R where f(x) =x and

g :]2, 3] = R where g(x) =x2

[+ g isnot defined. Similarly for functions

/[0, 1] - [0, 1] where f(x) =x and

g:10, 1] > [0, 1] where g(x) =x?

J+ gisnot defined as f(x) + g(x) goes beyond the co-domain [0, 1] and reach out to
[0, 2]. Thus, for the definition to be meaningful, we may take

f:10,1] > [0, 2] or R.

g:]10,1] —>[0,2]or R.
Also for X = {Ram, Gopal}, Y= {Potato, Tomato}

J,: XY, [, : X=Y,defined by /, : {(Ram, Potato), (Gopal, Tomato)}

/, - {(Ram, Tomato), (Gopal, Potato)}

f, T, is not defined as f, (Ram) + f, (Ram) = Potato + Tomato is meaningless as the co-
domain is not endowed with additive structure.

Example 23
f:R—>Randg:R — Rsuchthat f(x) =2x+3, g (x) =x>+9,x € R.
Find the sum function and its value at x= 1
Solution
f+g) ) =fx)+g @ =2x+3) +x*+9=x*+2x + 12
The value of (f+g) (x) at x=1is 12+2.1+12=15,
ie. (f+g) () =15.
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Example 24
Let fand g be two real functions defined by
f(x)=|x|, yxeRand gx)=x, yx € R

f
find f+g, f-g, fg, "

Solution
The domain of both the functions fand g being R, the intersection of these domains is also R.

Therefore f+ g : R — R such that

2xifx20
(f+g)(x)=f(x)+g(x)={0 o
Similarly,
J 0if x=0
(-8 D=1, i x<0
xZifx 2 0
() ()= {-xzi[‘x<0

lifx >0
o
g |-1if x<0
_ S
Note that since g(0) = 0, dom | 7 | = R- {0}

J
Hence (EJ (x) is not defined forx =0

Example 25

Letf:[-3,0) >Rsuchthatf(x)= [ +3

andg:R-(-2,2) > Rsuchthatg (x)= /7 _4

, S
Find f+ g, E
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Solution
Have domf = Df: [-3, ) and domg = Dg =R-(-2,2)
DD, =[-3,-2] U[2, ) which is the domain of f + g.
Now f+ g :[-3, -2] v |2, ) = R such that
f+2) ) =f)+2®= Jx73+yx2-4-

since g (x) =0 for x ==* 2, we have exclude -2 and 2 from Df M Dg

J
So E :[-3, -2) w (2, ©) — R such that

[fho-fo7=

g
EXERCISES 3 (¢)
1. Give an example of a relation which is not a fuction.
2. If X and Y are sets containing m and n elements respectively then what is the total number of

fuctions fromXtoY ?

3. Find the domain of the following functions :

x 1
i oo G GiDi-Ix] @)

1 12

1 X
- ) T3] o VR Ly

1+ tanx

()

1
x) [x]-x (® Jiox? (xi) log (sinx)

4. Find the range of the following functions:

2

== /T i) [] - (i) 7
1
Vs Gy Gidlog, (0 (i) Yyt
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10.

1.

Find the domain and range of the following functions:
2
= @33 (i) log, |x-2]
Give an example ofa step function
on[-1,3]={x eR|-1 <x<3}
Let X = {a,b,c}, Y={1,2,3,4}
(a) Find out which of the following relations are functions and which are not and why :
(D) {(a.1), (a,2), (b,3), (b} (i) {(a,2), (b,3), (c. 4}
(i) {(a.,3), (b,1), (a,4),(c.2)} (V) {(a,]), (b1, (c,D)}
(v) {(a,2), (b,1), (¢, 1)} (vi) {(a.,a), (b,b), (c.c)}
(b) Find the domain and range of those relations in (@) which are functions.

(¢) Identify the constant function, if any.
(d) Identity the Identity function, if any.

Find f(ﬁ) andf(—\/g) for the function

x2ifx<0

x 1f0 €£x <1

Jx) =

1.
—1fx>1
X

Find x for which the value of f(x) = x*- 4x + 3 is
») 0, (-1
Find the value/values of x for which the following functions are not defined :

sinx logcosx

(i) (i)

2 —
x=2 X secx

Let f(x) = J1+x . 8= J1-x

X

(@

find () f+g (i) f-g (iii) f (i) f

Also find the domain in each case.
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12.

13.

14.

x+y
If (x) = log (l_x) , then prove that f(x) + f(y) =f [ 1T ]
Nl+x Xy

Let /= {(-1,4), (2,7), (-2,11), (0,1), (1,2)} be a quadratic polynomial from Z to Z.
Find f{x).
Sketch the graphs of the following functions :

1
(i) /(e =, (i) f(x) = 1+ -, (i) /{x) = (-1



(CHAPTER 4)

Trigonometric Functions

4.0

4.01

A line is not made up of points.
- Aristotle

Historical Introduction

The word 'trigonometry’ is derived from the Greek words 'trigonon' and 'metron' which
mean 'angle' and 'measure’.

This subject was originally developed to solve geometric problems involving triangles.
The Hindu mathematicians Aryabhatta, Varahamihira, Brahmagupta and Bhaskara have a lot
of contributions to trigonometry. It is interesting to note that the words sine, cosine have entered
the latin mathematical vocabulary as mistranslations of certain words from Arabic which were
originally from Sanskrit. Besides Hindu mathematicians, ancient Greek and Arabic
mathematicians also contributed a lot of this subject. Applications of this subject have now
widened. Currently Trigonometry is used in many areas such as science of seismology, designing
electrical circuits, describing the shape of an atom, predicting the height of'tides in the ocean,
analysing musical tones and studying the occurence of sun spots. Attempts are also being made
to use trigonometric functions in forecasting fluctuations in the stock market.

Fundamental concepts - a recapitulation :
(Angles and angle-measure, arc-measure)

We recapitulate some concepts of geometry which form the basis of our presentation of
trigonometry as well as co-ordinate geometry in chapter-11. The theory of trigonometric
functions can be developed independent of geometry, which is beyond our scope at present.
So we make the development geometry - based.

These concepts, based on set theory, have been introduced by pioneers like Moritz
Pasch (1843-1930), David Hilbert (1862-1943) and G.D. Birkhoff (1884-1944). A quick
review of those concepts have been done, which are essential in understanding the set-theoretic
meaning of angle-measure and trigonometric arguments when they are arbitrary real numbers.

1. Points, Lines and Planes : These are undefined terms. There are several axioms
which determine their mutual relationship usually studied in the geometry- curriculumof high -
school level mathematics. One such axiom states that lines and planes are sets of points. These
entities, being undefined, have variable meanings and interpretations. Any sort of physical or
mental objects that satisfy the axioms governing these terms, can be regarded as manifestations
or models of points, lines and planes.

2. Collinearity : Three distinct points are said to be collinecar when they all belong to a
line.

[IfPis a point, L is a line and P € L, we usually say : P lies on L or L passes through P. |

3. The concept of distance, The ruler postulate : We always talk about the distance
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of one point from the other. In our day - to - day practice, we measure distance by assigning a
nonnegative real number to a pair of points by some instrumental device such as a scale.

Let us take any two points P, Q € £2(a plane) and call the distance between them as d
(P, Q). You can easily comprehend that distance 'd" is a function from the cartesian product P
x P onto the set of nonnegative real numbers. The following axiom, known as ruler postulate,
highlights the mathematical assumption inherent in the act of measurement.

Ruler postulate : Let &2 be a plane. There is a mapping d : #xP—>{xecR:x20}
so that for every line L ¢ £ there exists a bijective map, /: L — R, such that for all P, Q ¢
Ld®PQ=[/Q-/®)]

Note : 1. For assigning real numbers to the points of a line we first require a unit of
measurement. This is provided by d : # xP - {x e R: x> 0}.

2. The bijective map /: L — R is called a co-ordinate system or scale for L. /(P) is called
the co-ordinate of the point P, lying on L, in the scale 'f'. Nothing prevents us from choosing
different co-ordinate system by varying /. Achange in fresults in a different scale of measurement.

3. The distance d (P, Q) is also denoted as PQ and is also called 'length’. It follows from
the axiom that

v P,Q e £, (i) PQ =0, PQ =0 < P coincides with Q
(i) PQ=QP.

The triangle inequality PQ + QR > PR for P, Q, R € P follows with the additional assumption
that we take the same scale of measurement for different lines in the plane.

4. Betweenness : IfA, B, C are distinct and collinear, we say, B lies between A and C
and write A— B — C, ifand only if, AC=AB + BC.
Note that A— P -B<B-P-A.

Segment and Ray :

>
Notation : If A and B are distinct points on the line L, we write L= AB_ Clearly if C is
another point on L, then

R = T
L= AB = BC = CA = AC etc.

The set AB = {A, B} u {P:A—P—B} is called a segment (usually called the segment or line
- segment joining the points A and B).

- - R >
Clearly AB = BA and AB c AB.
A and B are called the end points of AB and length of AB is defined as AB.
- I
The set AB = AB U {P:A—B—P} iscalled a ray with vertex A and passing through B.

- -
If C is any other point satisfying either A— C— B or A— B —C, then obviously AB = AC
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- — . = — <
Two rays PA and PB are called opposite rays if PA U PB = AB

>
P B
(Opposite rays)

>/\

Notes : (i) AB c AB c AB (ii) ABuU BA = AB (iii)) ABn BA = AB

> <
(iv) AB , AB and AB are sets of points, whereas AB is a real number.

5. Convex Set : Aset of points S is called convex if v A, B € S; AB cS. Planes and lines
are convex sets.

6. Plane - Separation postulate : If Lis a line in aplane P, then the set of points of P, not on
L, are divided into two disjoint, nonempty and convex sets H and H, such that

AeH,BeH = AB nL=¢ie AB intersects L.
1
<« >
\ o L
B 2

Notes : (1) H and H, are called the half - planes or the sides of L. L is called the edge ofthe half
planes H and H,.

(By definition of edge, a half plane and its edge are disjoint)

- - L d
(2) The half planes of AB and AB arc defined to be those of AB.

N

7. Angle : If A, B, C are three distinct and noncollinear points, then the set ,ABC = BA v

B_Et is called an angle (read as angle ABC)
Interior of an angle : Consider /ABC . Let us call the side of
A BC containing A, as the A — side of BC and the side of AB
containing C as the C—side of AB. Then interior of
~/ABC .denoted as Int #ABC, is defined as the intersection of the

B }C A-—side of BC and the C—side of AB.

Observe that an angle and its interior are disjoint sets.
Measuring angles :
Angle— measure : Withanangle ~Apc we associate a positive real number m / Agc , called
measure of 2 ABC , by the following axiom :
Protractor postulate :

There is a function m from the set ofall angles onto {x:x € R, 0 <x <a } such that



Elements of Mathematics, Vol- 1 |

- P A
1.If BC isontheedge Bc ofahalf—plane H, then for every H
r € (0, o), there is exactly one ray B_:q , with A € H such that P
m/ABC = ¢
B e
2. If P e Interior ZABC, then mZABP + m/PBC m/ABC =7
=m<sABC. {mAABC:mLABP +mZPBC }

Nofes : (i) m is known as the angle - measure function.

(i1) The act of assigning a positive real number to an angle, in conformity with the postulate, is
called measuring the angle and the instrument making it possible is called 'a protractor'. A
protractor may be a physical object or even an abstract formula.

(1ii) If we take o= m, 180 and 200, then we get the angle measures in radians (written as r° or
simply r), degrees (written as » °) and grades (written as r# ) respectively. A change in o results
in a new protractor.

(iv) If 61is measure ofan angle, then 0 <0 <180 (in degree - measure),
0 <0< (in radian - measure) and 0 <0 <200 (in grade - measure).
Conversion of degrees into radians and vice-versa :

From the above definition, it is obvious that

1 degree = L radian and
180

1 radian = 180 degrees
T

Without mention of 'radian’, 'degree’ or 'grade’, it is to be understood as radian measure.

(8) Arc and arc - measure : [fP and Q are two distinct points P

on a circle, then PQ is calleda chord ofthe circle. The set of B
points of the circle lying on a particular side of PQ, together

with P and Q, is called an arc of the circle. A Q

P and Q are called the end points of the arc and PQ, the corresponding chord ofthe arc.
Obviously, if A and B are two points of the circle on the opposite sides of PQ, then they
belong to the two different arcs of the circle on both sides of PQ . These two arcs can be
denoted as ﬁ&b and @ and are called opposite arcs of cach other whose union is the

circle. AB is called the common chord of the opposite arcs.
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Semicircle, minor and major arcs.

Semicircle : Ifthe end points ofan arc are collinear with the centre ofthe circle, then the arc
is called a semicircle.

There are two semicircles on the opposite sides of any diameter.
Minor and major arcs : P R

If any point on an arc other than its end points and the

centre of the circle lie on opposite sides of the Q
corresponding chord, then the arc is said to be a minor
arc.

The opposite arc of a minor arc is called a major arc. In the accompanying figure, ﬁ(\g
is a minor arc and pg() is a major arc. We can also write pR() as the minor arc pQ) or pQ
(minor). Similarly pg¢) may be written as major arc pQ or pQ (major).

Arc - measure : Let Pand Q be points on a circle with centre O. We define the arc - measure
function m on the set ofall arcs of this circle as follows :

(i) m pQ (minor) = m£POQ
(i) m PQ (Semicircle) =n
(iii) m pQ (major) = 21— m£POQ

Notes : (1) We express m}g(\l in radians, degrees or grades by expressing m/POQ accordingly

in the corresponding measures and replacing = by 180 in case of degree measure and 200 in
case of grade measure.

(2) The range of the arc measure function is (0, 27) or (0, 360) or (0, 400) respectively in case
ofradian, degree or grade measure. In other words, if 6 is measure of an arc, then  0<6
< 2rn (radian measure) or 0 <0 <360 (degree measure) or 0 <0 <400 (grade measure). The
inequalities are strict.

Unless otherwise specified (eg 06° or 8¢), 0 is taken to be in the radian measure
both in case of arc and angle measures.

4.1 Trigonometric Functions
(Their signs, domains and ranges)

To define trigenometric functions we first build up the fundamentals by introducing the
Rectangular Cartesian Co-ordinate system and the Polar Co-ordinate system which
are essntial to the understanding of the meaning and signs of trigonometric functions for any
real value 6 without involving the intuitive concept of rotation ofa ray.

(Terms like 'Rotation' and 'Translation' shall be introduced in due course, later in the sequel.)



Elements of Mathematics, Vol- 1 |

Rectangular Cartesian Co-ordinate System : We know from the ruler - postulate that
there is one to one correspondence between the set of points on a line and the set of real
numbers, R. We make use of this correspondence to establish a one to one correspondence
between the set of points on a plane and the cartesian product R xR.

AY
Second Quadrant M First Quadrant
<0 x>0 P (x.y)
y>0 y>0
0
x - Third Quadrant X
x< 0 Fourth Quadrant
y<0 x>0
Yo

Let x'x and vy be a pair of mutually perpendicular lines on a plane, intersecting each
other at the point O.

The point O is called the Origin and x'x and y'y, the x — axis and the y — axis
repectively. Taken together, these two lines are called cordinate axes.

Choosing the same scale of measurement for both the co-ordinate axes we build up a co-
ordinate systemas follows :

Let P be a point on the plane and let the lines through P perpendicular to x and y axes
meet them respectively at N and M. We associate a pair of real numbersx and y with the point
P according to the following definition.

- -
ON, ifN € 0OX oM, ifM e OY
x= - = -
-ON, if N € OX' -OM, if M € OY'

The real numbers x and y thus associated with the point P are called its x — co-ordinate or
abscissa and y — coordinate or ordinate respectively, the fact being symbolised as P=(x, y) or
simply as P (x, y). The x and y— co-ordinates together are called the Cartesian co-ordinates of
P and are denoted by the ordered pair (x, ). It is obvious from the above definition that given
an ordered pair (x, y) € R x R we can get exactly one point in the plane and conversely.

The set of co-ordinates we obtain in the above process is known as the rectangular
Cartesian System of co-ordinates, named after Rene Descartes, the French mathematician
and philosopher who developed co-ordinate Geometry.

Notes : (1) Tt follows from the definition of co-ordinates that the origin has co-ordinates (0,0).

(2) The sets of points {(x, 0) : x>0}, {(x,0):x <0}, {(0,y):y>0} and {(0,y):y <0} are
known as the positive x — axis, negative x — axis, positive y — axis and negative y —
axis respectively.
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(3) The side of x — axis that contains the positive y — axis is called the upper half — plane of
x - axis and the side that contains the negative y - axis is called the lower half - plane ofx -
axis. By 'above' or 'below' x — axis, we shall mean the upper and lower half — planc of x —
axis respectively.

(4) The y — co-ordinate of P can also be PN or — PN according as P is in the upper half— plane
or lower half- plane of x — axis.

(5) The plane of x and y - axis is known as the Co-ordinate plane or the Cartesian plane.

The Four Qudrants :

The set of points not on the co-ordinate axes is divided into four disjoint subsets known
as quadrants.

First quadrant Q, = Interior ZXOY
Second quadrant Q, = Interior £X'0Y
Third quadrant Q, = Interior £X'0OY"
Fourth quadrant Q, = Interior /XOY".

By the definition of Cartesian coordinates,

MDP(x)»)eQ <x>0,y>0

()P (x))eQ,x<0,y>0

(i) P (x,)) € Q,&x<0,y<0

(V)P (xy)eQ, < x>0,y<0.

Polar coordinate system :

To develop the polar coordinate system we consider the position of a point in the cartesian

- -
plane with respect to the positive x —axis OX and the origin O. In this system OX and O are

known as the initial ray and the pole respectively.

Y
P(0), 6=msXOP
P (1, n)
X! ON— T /A@o =~ X
P (r,0), 0=2n—-msXOP
Yl

Definition :
A point P in the plane has polar co-ordinates (r,0);r, 6 € R where r= OP and 60 is defined as
follows :
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(1) IfPcoincides with the pole, 6 is any real number. (obviously » = 0 in this case)

(2) IfPis different from the pole, let a circle of radius OP intersect the initial ray at A We
define :

() IfPlieson the initial ray i.e. coincides with A, then =0

(i) IfP lies inthe upper half - plane of the initial ray, 6= mAP (minor) i.e 6 =m<XOP

—
(i) IfPlieson OX',6=mn (measure of the semicircle in the upper half - plane of x - axis)

(iv) IfP lies inthe lower half - plane ofthe inital ray, 6 = mlﬁ\’ (major) i.c.
0=2n —m«XOP.
N.B. (1) Ifa point P has polar co-ordinates (r, 0) we write P =(r, 0) or simply P (x, 0).
(2) The concept of minor and major arcs or semicircle have been brought into the definition
simply to give a geometric significance to 6 in P(r, 6). The definition is complete even

without the clauses involving a circle and arc — measures. AvY
Ilustration : Let us find the polar co-ordinates of the point

having Cartesian co-ordinates (1,—1)

Let P be the given point, X' N -
Here ON = NP = 1 0 X
~OP = V2 and msXOP = 45°,
(As APON is isosceles and right - angled) P, (1,-1)

VYI

Taking ()_))( as the initial ray and origin O as the pole, the point P has polar co-ordinates
(r, ) where r = 0OP= V2 and 8=2n - msXOP=315°, ( -- Pe lower half - plane of initial ray)
Thus we have P (12,3159
Extended definition (Polar co-ordinates) :

The definition of polar co-ordinates given earlier restricts » and 6 respectively to [ 0, «)
and [0, 2n). We now liberate both of them onto R by the following extension.

Definition of (r, 6) for 6 € R
(1) Forr eR
(r,0+21) if 0<0
(9= 0-21) if 0227 .
(2) ForOeR,(r,0)=(-r,06+n),ifr<0.
(1) and (2) together give the definition.
Note : if 0 <0, by definition (r, 0) = (1, 0 + 27).
If again 6+ 21 <0, then
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(r,0)=(0 +2n)=(,0+4n)= ... =(r, 6+ 2nn)
until0 < 0+ 2nn < 2m.

Similarly for 6 > 2n, we have (1, 0) =(r, 06— 2nn)
Thus in general (1, 0) =(r, 6 £ 2nm);n e N

or |(r,0)= (r,0 + 2nn); n €/

Applying the above formula to (r, )= (-1, 0 +7)

we get | (7,0) = (=, 0+(2n+Dn),n e’

Mlustration : (i) (-3, 765°) =(-3,45°) =(3, 225°)
(ii) (r, —30°) = (r, 330°)  (Prove)
Non uniqueness of polar co-ordinates :

It is evident from the definitions of Cartesian and polar co-ordinates that given the Cartesian
or polar co-ordinates, a point can be uniquely determined in a plane.

Conversely, given a point in a plane its Cartesian co-ordinates are unique, but its polar co-
ordinates vary.

The following are examples as well as the reasons of nonuniqueness of polar co-ordinates
ofa point.
1. For the pole » = 0,but 6 can be any real number.
2) D@E0)=(r0+2nn),nel’

() (r,0)=(—r,0+2n+ Dn),n e Z.

Ilustration :

(2, 450°) = (2, 90°)

[Def (1)] =(-2, 270"

[Def(2)]

N.B. While defining polar coordinates some authors refer to r as
'radius vector' and 6 as 'vectorial angle' But, as incase of cartesian
coordinates, r and 6 are simply real numbers.

Trigonometric ratios and trigonometric functions :

We make a review of definitions known from high school - level mathematics.

[f61is an angle measure such that 0 <6 < us , then the six trigonometric ratios : sine, cosine,

tangent, cotangent, secant, cosecant for 0, abbreviated as sinf, cosb, tan6, cot6, seco, cosecod
have been defined as follows :

Let ABC be aright angled triangle, with m~ACB = % Let m
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A
Z/ABC=0.Then0<6< % . Corresponding to 0, the lengths AC,
BC and AB arec known as p (perpendicular), b (base) and h h
(hypotenuse) respectively. [observe that corresponding to ZBAC r
p. b and h are respectively BC, AC and AB.| 9 -
Definition : 1 B b C
= £ = AC _ b _ BC _ P _ AC
sind 7 INE coso P AR tan 0 b BC
_b _BC _h _AB _h _ AB
coto = p = AC , secO = b~ BC: coseco = »~ AC"
. _ sinf _ cosf 1
[ We can also define : tanf = cotH=

0= —1 0=—L
sin0 ©T tan0 ° 5€¢ cos > COSeC sin0 ]
Note : (1) We also write sinf as sin ZABC and similarly for the other trigonometric ratios. ( 2 )

It follows from the equality ofratios of lengths of corresponding sides of similar triangles that

these trigonometric ratios are independent of the lengths of the particular sides AB , BC , AC
of AABC. They actually depend on mZABC i.c. 6.

cosB >

Definition — 2 : For angle - measure 2 we define

2
COS%
sin 5 l,cos2 0, cot 3 sin & 0, cosec 5 —x 1
2 sin-5

tan% and sec % are not defined.

Note : sin% , cos% , cot% and cosec% have not been defined as ratios of lengths. So we do not use

the term 'trigonometric ratio' for them. We shall replace this term by the more general term
'trigonometric function' in due course.

Definition — 3:

M (e}
0 or 0° is not an angle - measure. However, we define sin0° =0, cos0° = 1, tan0° = zglsgo
1

cos0°

Note : cot0° and cosec0° are not defined.

=0, sec0°® =

=1.

For the same reason as above we do not use the term 'trigonometric ratio' for sin0°, cos0°,
tan0° and sec0°.

Trigonometric functions for 0 € R.

Let (r, 0)_and (T, G)y denote respectively the x —and y— co-ordinates of a point whose
polar co-ordinates are (r, 6); >0 and 6 € R.
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Tllustration A
In the figure r=0P = |/ B
VY
0=m ABP=315°.
.. Polar co-ordinates of P - N T > X
are given by (r, 0); X Ol \Xa5°
wherer= ,/p and 6=315°. P (\2.315°)

P has Cartesian co-ordinates (X, y), where
x =ON ( =1, in this case) Y!
y=—PN (=-1, in this case).

< (42,3159 =ON, (7,315% =-PN
i.c(y2.315%), =1and (3 ,315%) =-1.

Similarly (2, %)f 1 and (2, %)yz V3.

The six trigonometric functions are given by the following.
Definitions :

r,0
(1) sine:R - [-1, 1];sin9=g;r>0,eeR
T

(i) cosine: R —[1, 1]: cosd = %;r >0.0 R,

(iii) tangent : R — {(2n + 1)%: neZ} >R;

_ Oy sin6
(1,0)x O Cosh °

tano r>0,oER-{(2n+1)g:neZ}
(iv) cotangent : R— {nm:n e Z} - R;

(r.0)
cotd= (g or 8150 0eR- (nun ez}
(1.0)y

sino
(v) secant:R — {(2n+1) g:n eZ} >R—(-1,1);

r 1
5eC0 = (7.0), OF Gosp 7~ 00 R~ {(2}14—1)%:3162}

(vi) cosecant : R—{nnm:neZ} > R—-(-1,1)

>0 06eR—-{nn:neZ}

T
cosech = (r.6)y or ﬁ

N.B. By taking r=1 in the above definitions we get the trigonometric functions from a unit
circle.
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Notes :

I. From(r,0)=(r,0+2nn),ne”Z, we get:
sin6 = sin (0 + 2nm), cosd =cos (0 +2nn); n € Z
Similar relations also hold for tan6, cot6, sec, and cosecO in their respective
domains In general if 'T' is a trigonometric function, then T(0) =T (0 + 2nn),n € Z
We shall discuss more when discussing period of a trignometric function.

2. (r,0) =0for6=2n+ 1)%, n e Zand (r, 6),=0 for 6 =nn, n € Z. For this reason
{2n+1) % :neZ}and {nn:n € Z} have been excluded from the domains of tan, sec and
cot, cosec functions respectively.

3. It follows from the equality of the ratios of lengths of corresponding sides of similar triangles
that the values of the trigonometic functions for a given value of6, do not depend on any
particular value chosen for »> 0.

4. Forr>0and 0<0 <%, (r, 6) is in the first quadrant where (r, 8)_and (r, 6)_are both
positive. Therefore these definitions agree with the definitions of the six trigonometric ratios
given earlier.

5. Relation Between Cartesian and Polar co-ordinates : If P (r,0) = P(x, y), then by
definition of sine and cosine functions, | x=rcos® | and | y =r sinb |.

[Here (1,6) and (x, y) are respectively polar and cartesian coordinates of the point P].
Illustrations : BAY(r, 90°)
1. Inthe figure r= OP and
N i
mABP =225° So the point P has N
-ordi ° -

polar cg ordinates (7, .225 ). X! 155710 A D'
(r,225°) =x-co-ordinate (£.225°) r

T . P \
of P=-ON = —f and (r,225°)y= y - co-ordinate of v

Yl
P=—-PN= —=
V2
S

225°

sinzaso= TPy N2

1
r T \E ’

€0s225° = 7“’2? )x - _ﬁ =_
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Similarly other functional values such as tan 225°, cot225° etc. can be obtained.
2. Find sinb and cos6 for 0= 810°

We use note (1),

sin810° = sin (810°-2 x 360°); taking n= -1 in

sin0=sin(0+2nn);n € Z

- sin810°=sin 90° =1

and similarly cos810° = cos 90° = 0.

Note that cosec 810° = =1, but tan810° and sec810° are not defined.

sin 810°
Signs of Trigonometric Functions
The ASTC (All, Sin, Tan, Cos) Rule : It follows from the definition of coordinates ofa
point in a plane and the definitions of the trigonometric functions that
i) 0<0< % = (r, 0) € Ist quadrant, forr>0=(r, 6) , (r, 8) >0
= Allofsin8, cosH, tanb, cotd, sech, and cosech, are positive.

(ii) % <0<m=(r 0) €2nd quadrant, for »> 0.

= (1,0),<0, (,0),> 0
= sin6 > 0. (All the rest, except coseco, are negative)

n

(iff) 7 <0 <375

= (r, 0) € 3rd quadrant, for > 0.
= (r,0),, (r,0),<0

= tanB > 0. (All the rest, except cotb, are negative)

)3T <p<2n = (7, 0) € 4th quadrant, for »> 0.
2

= (,0),> 0, (r,0),<0
= c0s0 > 0. (All the rest, except sec, are negative)
Pictorially the rule is depicted as :

AY
A
All positive
S postiiv
sine/cosec positive
xr ) ¢
T C
tan/ cot positive cos/ sec positive.

YY!
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The ranges of trigonometric functions :
It follows from the definitions that

0yl |y
-

= =2 <1 (- [y <r. We write (,0) =xand (,0) =)

[sin@| =
-

=-1<sin6<1, for6 eR
similarly—1 <cos6<1,6 e R.

So range of sine as well as cosine function is [ -1, 1].

From this it follows that cosec 6> 1, for 0 <sin 6< 1 and cosec 6<—1, for—1 <sinf <0.
Thus cosec 6 € R — (-1, 1) or (w0, — 1] U [1, «). for 6 € R — {nn; n € Z}. By similar
considerations for sec, it follows that the range of secant as well as cosecant function is
(-, —1] U [1. ).

(’"ae)y v )/2

[tan 6 | = o, x| V2
X AY
But = OP*= ON? + PN? (Pythagoras thcorem) P(r.6)
(For 06=nm, neZ)
= [+ A =2+ )2 4
-« >
‘. [tan6] = J},z_xz = \/i—l X! N O X
L 2 2
J],,2
= tand = + 27 ] *Yl
2 2

Since © 5> =1 ( L 5 =1.when0=nn, n € Z), it is obvious that tan6 assumes any real number as
X~ X~

its value, depending upon the value of x in [-r, ] — {0}, for0 e R— {(2n + 1) % :neZ}.By
similar considration for cot0, it follows that the range of tangent as well as cotangent function
is R.

The domains of these trigonometric functions have been given in their definitions.

A note on the variable of a trigonometric function :

It may be observed that the definitions we have given for trigonometric functions ofa real
variable, are primarily based on geometric considerations. But, at higher levels, when we discuss
infinite series, we shall be in a position to define the trigonometric functions independent of any
geometric consideration. Moreover, our definitions of trigonometric functions shall also be

applicable to complex variables i.e. we shall be able to talk about sinz, cosz e¢tc. whenz is a
complex number.



| Trigonometric Functions 85 |

The variable 6 in our definitions is same as an angle - measure in radians when 0 <6 <,
which is also the same as an arc - measure for a minor arc of a circle. Butift <6 <2n, 6isno
longer an angle - measure. At that time it measures a major arc ofa circle. So, in this case, 0
should not be called an angle - measure or angle.

When 6 =0, it is not an angle” measure or arc - measure. For these reasons, it is most
general and logical, at this stage, to refer to the variable of a trigonometric function
not as an "angle’ but as a real number or argument.

Many a time we come accross phrases like 'negative angles', 'multiple angles', 'sum of
angles', and the like. Though these are not valid in in accordance with contemporary set-theoretic
definition of an angle, they are still in vogue as the trigonometric arguments such as '0' were
unitially used for 0°<6 <180° which were actually angle-measures.

4.2. The fundamental trigonometric identities : AY

Theorem —1 :
sin’0 + cos’0=1;0 e R
Proof : Let the point P (%, 0), N
(r>0, 6 eR), in polar co-ordinates, X!

> <

o

have Cartesian co-ordinates (x, y). Then,
P(r,0)=(x,y)

by definition of the sine and cosine functions,

v
1 OP=r
sinez%andcow:f. Y

o
Let PN L X'X . Intheright — angled triangle PON, by Pythagoras — theorem, OP?> = PN?
+ON? ... @)

From the definition of Cartesian coordinates we have : [x| =ON, |v| = PN.

L@ =r=pP =y

2
= X x2
2

+ r_2 =1 =sin’0 + cos’® = 1; for 6 € R.[]
Corollary : sec’0 =1 + tan’0, cosec’0 =1 + cot*6 ; 6eR
Before proving the next two theorems, we discuss two properties of arc — measures in
relation to polar co-ordinates of points on a circle. [ The proofs of Lemma -1 and Lemma -2 are
not for examination. |
Lemma -1 : Let P (#, 8) and Q (7, ¢), in polar coordinates, be two distinct points on a
circle of radius », with centre at the pole. Then measure o of an arc of the circle, with P and Q
as end points, can be expressed as :

oa=0¢0—0+2kn; ke Z
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Q(r.¢)= (% ¢+2nm)

Proof : Let the circle intersect the initial ray at A.

P(r, 6)

We suppose that neither of Pand Q
=(r 6+ 2mn)

coincides with A.

We can find m, n € Z such that
0<6+2mn <2nand

0 <¢ +2nn <2m and (Equality does not arise because of the assumption : A does not
coincide withP or Q)

By the definition of polar co-qrdinates, we have m AP = 0 + 2mr and m@ =¢ + 2nm.
[The arcs AP and Af(\) will be minor or major arcs depending upon the positions of the points P
and Q in the upper and lower half'planes of 5}]

P and Q being distinct, 0 + 2mn = ¢ + 2nm.

Suppose 6 + 2mn < ¢ + 2nm.

= m@ < m@

Then, by the definition of polar co-ordinates, P is a point on @ different fromAor Q.
:>mp((\3 = m AP +m1§_c\g;where AP CAra and @c@
=SmpQ=0¢+2nm—(0+2mm)=¢—0+2(n—mm ... (1)

Putting k =#n —m and a=m1§(3, we get
a= ¢—0+2km;k €Z ........... (A)

[fwe suppose ¢+ 2nn <0+ 2mmn i.e. mA((\) < m/@, we have mAP = m@ + m61\>; where
Ké c AP and 61\3 c AP.

:m@)=m1§a =m@—m@ =0—-¢+2(m—n)n ....... (2)

There are two arcs with PQ as the common chord. The measure of one such arc is expressed
by (2). The measure of the other arc is 2n— {6 — ¢ + 2(m — n)n}

=¢p—0+2(n—m+ DA oo (3) P(0) = (x.)

We choose the arc whose measure is given by (3) to satisfy the requirement ofthe lemma.

So, taking o as the measure ofthisarci.c. a=¢—0+2 (n—m + 1)rand putting k=n-—m

+ 1, we get

A and B complete the proof.

In case one of P and Q coincides with A, the proofiis trivial and is left to the reader.
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Definition (Congruent ares) : Two arcs on the same circle are congruent of they

have the same measure.
(Note that we cannot have congruent arcs on different circles).

Lemma -2 :
If0+2mnand 6+ 2nn (6 € R and m, n € Z) express arc — measures on the same circle
then the arcs must be congruent.
Proof : Let =60+ 2mmn, f= 0 +2nm express arc measures.
Therefore 0 < a<2mand 0 < < 2.
Suppose a < p. Then 0 < —a <p <2m.
=20<2m-mn<2n = 0<n-—m<1;which is impossible since m, n € Z. So .a<
Similarly it can be proved that p < a.
Therefore o= 3,which means that the arcs whose measures are expressed by 0+ 2mn and
0 + 2nm, are congruent.[]
Theorem — 2 :
c0s (— 0) = cosO and sin (—-0) =—sin0 ; 6 € R
Proof : 1f0=2kn, k € Z, then (r, 0) =(r, 2kn) =(r, 0) (r>0)
and (r,— 0) =(r, — 2kn) =(r, 0) (> 0).

(f",_e)x — (FJO)X - 1 =1
r r r ’

S.cos(—0)=

0 0
Also cosO = ("’r)x = (r’r)x = ? = 1; So that cos (—0) = cosb.
—0 0
Again sin (-0) = (r=9)y = (rO)y =0
r r
r0 70
and sin® = Oy _ Oy _
r r
.. sin (—0) =—sin6. Similar results also hold for 6 = (2k +1)x .
Now suppose 0 = kn; k € Z. y
Let P (r, 0) and P' (r, — 0) (> 0), in B‘
polar co-ordinates, be points on a circle of P' (10) = (x, ¥)

radius » and centre at the pole, O. Let the circle
intersect the initial ray at A. Then obviously, A
has polar co-ordinates (, 0). It can be casily X' O N/A
proved that(_P)(r,G) and P'(»—0) lie on opposite
sides of x'xi.e. X — axis and hence p'p
intersects the x— axis. Let the point of v =(x -

> x

P'(r—0)

intersection be N.
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By Lemma -1, measure a of an arc with end points A and P and measure  of an arc with end
points A nd P' are expressible as : =0 + 2k n, and B=0+2kn; k,k €Z.
So, by lemma—2, a=.

= Ap and Ap' are corresponding chords of congruent arcs ofa circle.

o
= AP =AP'. It now follows from clementary geometry that PP' LOA = PP' || y- axis=P
and P' lie on the same side of y - axis (Plane — separation postulate)

Also it follows from elementary geometry that PN = P'N. Therfore P and P' have
equal x- co-ordinates, but opposite y- co-ordinates (Same in absolute value, but opposite in

sign).
. 1f(x, v) be the Cartesian co-ordinates of P (r, 6), then cartesian co-ordinates of P' (», —0) are
given by (x, —).
It follows from the relation between Cartesian and polar co-ordinates that
x=rcosO,y=rsmo .. (D
andx= rcos(—0),—y=rsin(-0) ... (2)
(1) and (2) imply cos (—0)=cos6, sin (—0)=—sin0; 6 € R.
Corollary : tan (—0) =— tan 0 ;0 € R.
N.B. : The identitics : sin (- 0) = — sin 0 and cos (— 0) = cos 6 show that sine is an odd
function and cosine is an even function. Similarly tangent is an odd function.
You can take similar decisions regarding the remaining trigonometric functions.
Theorem - 3 (Addition theorem)
Fora. B, e R
(i) cos (a+ B ) = cosa cosp — sina sinp
(ii) sin ( a + B) = sina cosp + cosa sinp
Proof: - We shall prove the first one. The second will follow as one of the corrollaries.
LetA(1,0),B(1,a),C(1,a+pB),D(1,—p),allin polar co-ordinates, lic on a circle
of unit radius and centre at the pole.
We first suppose A and C are distinct points. From this, it can be easily proved that B
and D are also distinct points and vice versa.
By lemma- 1, measure 6 of an arc with AC as the corresponding chord is given by
O=a+p+2k m xeZ..... (D

and measure ¢ of anarc with DB as the corresponding chrod is given by
dp=a+p+2k m x,€Z.... (2)

By lemma (2), AC and DB are chords of congruent arcs on a circle and, therefore,
AC=DB.
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Next, if Aand C are coincident then B and D are also coincident so that AC =0=DB.
Thus, in any case, we have AC = DB.

In cartesian co-ordinates we can express the points as follows: A(1, 0), B (cosa, sina), C (cos (o
+ B), sin (a +)), D (cos (—P), sin (—p)) i.e. D (cosp, —sinp) (by theorem - 2).

Now, AC=DB

= {cos (o +B)— 1}> + sin® (o + B) = (cosa— cosP)* + (sina + sin p)?

= cos (o + ) = cosa cosP — sina sinf. (after simplification)

Corollary —1:

cos (a—B) = cosa cosP + sina sinf
Proof :- Replace p by — B in cos ( o+ ) = cosa cosp — sino sinf and apply theorem - 2.

Corollary -2 : (i) cos (%— 9) = sind

(ii) sin (%— 9) = cos0, for 0 e R.

Proof:- (i) For anyreal number 0, the result follows by putting o.= /2 and f =—-0 in cos(a+f)
= CcOSa COSP — sina sinf.

(i) Replace 0 by Z —0in cos (g— 9) = sin6, which holds for any 0  R.
Corollary -3 : sin (o + B) = sina cosp + cosa sinp ; for o, f € R.

Proof :- Replacing 0 by o+ B in sind = cos (% - 9) ;
sin(o.+ B) = cos (%—(Oﬁﬁ)) = oS ((%—ajﬂ—ﬁ)]

= COs (%—Oﬂ) cos (—B) —sin (g—aj sin (—B)
= sin o cos B — cosa ( — sin B) = sina cosP + cosa sin B. [0
Corollary -4 : sin ( a— ) = sina cosp — cosa sinf ; a, p € R.
Proof :- Replace p by —p in corollary —3.
Corollary -5 : For o, B,y € R.
tan o+ tanp tan o —tanf

(i) tan (a+p)= 1—_tanotanp ° (ii) tan (a-P)= 1+ tano tanp

tan o +tanf +tany — tanotanftany

+ -
(i) tan (a+P+y)= T o B — tanp tany —tany tana
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Proofis left as exercise for the reader.
Some of useful deductions from the addition theorem.

For 6 e R
I. (1 sin(m—-0)=sin0 (ii) cos (= —0) =—cosO

(i) tan(m —0) =—tan0; 0 = (2n +1) % ,nelZ
(iv) sin(2n —0) = — sin6; (v) cos (27— 0) = cos O
(v) tan (2n-6) =—tand, 0 (2n+1) 5, n e Z.
Proof: Apply the addition theorem and its corollaries.
2. Replacing 0 by — 0 in the above we get
(i) sin(m+0)=— sin 0 (ii) cos (© +0 ) =— cos 0 (iii) tan (x + 6) =tan 0
(iv) sin (2n+0)= sin 0 (v) cos (2n+60 )= cos 0 (vi) tan (2n + 0) = tan 0,

with obvious restriction on 6 for the tangent function.

3. We have already proved that cos (% —0) =sing, sin (% —0)= cosO
Replacing 6 by — 6 , we get ¥
(i) cos (% +0)=—sin 0 (ii) sin (% +0) =cos 0

4. For 6 eR,sin (n+0)=— sind = sin (2n+0)=sin (1 + (n +6))

= —sin (t+0)= — (—sin 0) = (—1)* sin6.

Proceeding inductively we get, | sin (nw+80)= (-1)" sin6

Similarly | cos (nt+0)= (-1)" cos0

and tan (nt+6) =tand .

These results can be proved for n € Z applying the fact that sine is an odd function and
cosine is an even function.

By repeated application of sin (% + 0) = cos0 using

sin (n +6 ) =— sin6 it can be proved that,

if n is an odd integer.

in (nZ +0) = n-1 0 T o) = n_+1.e T o) = 0
sm(n2 )—(_1) 2 cos,cos(n2 )—(_1) 7 sin .,tan(n2 ) =—cot
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For even n, the previous formulae will take care.

Multiple and submultiple arguments.

For an argument (variable)6, usually 26, 36 etc. are called its mutliples and % % etc. are

called its submultiples.
[For arguments 0 and ¢, 0 + ¢ is usually called a compound argument. ]

(A) (i) sin 20 =2sina cos a (ii) cos 2a = cos’a — sin‘a = 2 cos’a —1= 1-2 sin’a.

Gi)  tan2a= & L@ DT
I-tan“ o’ 2
Proof : Take o= pin the addition theorem.
(B) () sin 3o = 3sina —4sin‘a (i) cos3a =4cos’a — 3cosa

3

. Itanc —
(i) tande = >ARE—W0 O
1-3tan”“ o

o ¢(2n+1)%.

Proof : Write 3a.=2a + o . Apply the addition theorem and the above formula for 2.

©) Putting o« = 3 in (4)
- 0= 9cin D coed (i e 0B s 00 .0
(1) sin6d 251112 Cos5 (i1) cosb = cos 5 —sin5 2cos 7 —1=1-2sin 5
2tan%
(iii) tand = 50"
I-tan” =
2
From these three we can obtain
(iv) sinzg _1 (1 —cos0) (V) cos? 9 _1 (1 +cosb)
2 2 2 2
i) tand = —sin0__ 1-cosO
2  1+cosO sin©
D) Putting .= 3 in (B)
(i) sin® =3 sin % -4 sin3% (ii) cosO = 4cos? % — 3cos%
3tan%—tan3%
(i)  tand = X
1-3tan §

(1)

(2)

3)

(4)

©)

(6)

(7
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C+D cos £=D (8)

(E) sinC + sinD = 2sin 3 >

C+D i C-D

sinC — sinD =2 cos 5 sin = 9)

C+D C-D

cosC +cosD =2 cos 5 C0s — (10)

cosC —cosD = 2 sin C;D sin DEC wee  (11)
Proof: We have sin (a + ) + sin (a.— 3) = 2 sina. cosp ......... (1)
sin (o + pB) —sin (ao— B) =2 cosa sinf ......... (i1)

(using expansion of sin (o + ) and sin (o — p))

Now, putting a+ f=Cand o—B=D, o= C5D=[3= CED'

Writing (i) and (ii) in terms of C and D we get :

C+D C-D
2 CcOos 7

sinC + sinD = 2sin

sinC —sinD =2 cos C;D sin CED.

We also have : cos (a— ) + cos (a+ ) =2 cosa cosp ......... (iii)
cos (a—PB) — cos (a+ B) =2 sina sinf ......... (iv)

Puttinga—p=C,a+B=D, a= CJZ“D, B= D;C

Writing (iii) and (iv) in terms of C and D we get :

C+D  D=C_,  C+D  C-D
B COS B COS 7 COS 2

cosC + cosD =2 cos

(-.- Cosine is even function)

cosC — cosD =2 sin C;D sin DEC .

Example 1 :
Express sin 1000° as the trigonometric ratio ofan acute angle.

since 1000° =2 x 360° +280° sin1 000° = sin (2 x 360° + 280°)

2

= $in 280° = sin (180° + 100°) [- sin (nm+6) = (=1)" sinf]

=—sin 100° [sin (m+ 6 ) =—sinb]
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=—sin (90° + 10°)
=-—cos 10° [sin (90° + 6) =cos0]
or dividing 1000° by 90° we get 1000° =11 x 90° + 10°

11-1
. sin 1000° =sin (11 x 90°+ 10°) = (=1) cos10°

=—cos 10°.

n-1
[-- sin (”%Jre) = (-1 2 cos0:nodd]

Example 2 :
Find the values of (i) tan (—900°), (ii) sin 1230°, (iii) cos (=1020)°
§) tan (—900°) (- tanis an odd function)

= —tan 900° = —tan (10 x 90°+ 0) = —tan 0 = 0.
()  sinl230°
= sin (3 x 360° +150°) = sin 150°

= sin (180° —30°) = sin 30° = .

(iii) cos (— 1020°)
=¢0s (1020°) (- cosiseven)
=c0s (2 x 360° + 300°)
= cos 300°
=cos (180° + 120°) =— cos 120°

~ — cos (180° - 60°) = cos 60° = 5 .
Example 3 :

Show that the equation cos6=a + % does not have a solution ifa = 0 is real.

Proof : We have
2 2 2
d) -l (o
a a a a
1 2
Therefore (a + E) >4,

= a+lz 2 or a+ls -2
a a

= co0s0 > 2 or cosb <—2 (impossible).
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NS W

10.

4.3

EXERCISES 4 (a) |

State which of'the following are positive ?

(1) cos271° (i) sec 73° (i) sin 302°
(iv) cosec 159° (v) sec199° (vi) cosec 126°
(vi) cos315° (viil) cot 375°

Express the following as trigonometric ratios of some acute angles.

(i) sin 1185° (i) tan235° (iify sin (—3333)°
(iv) cot (—3888°) (v) tan458° (iv) cosec (—60°)
(vi) cos 500° (viii)  sec 380°
Find the domains of tangent and cotangent functions.

Determine the ranges of sine and cosine functions.
Find a value of A when cos 2A = sin3A.
Find the value of cos 1°. cos2° ..... cos 100°.

Find the value of cos 24° + c0s5° + cos175° + c0s204° + co0s300°.

no 3 sn
Evaluate tan 20.tan 20 .tan 20

In

an on
20 -

t tanzo.

sin® (180°+A). tan(360°—A).sec? (180°—A)
cos? (90°+A)cos ec?A. sin(180°-A)

Show that =tan’A.

If A= cos?0 + sin0, than prove that for all values of 0, % <A<lI.

Periodicity of Trigonometric functions and their graphs :

We have proved that sin (x + 2m) = sinx, cos (x + 27) = cosx, tan (x + m) = tanx for all x
in the corresponding domains of the functions.

Consider the sine function.. Suppose 0 <k <2m and sin (x + k) = sinx, for all x.
Putting x = 2n—k. we get sin2n =0 =sin (2n — k).
= 21—k =nn (By definition of sine function)
= k= (2—n)n which is a multiple of .
Since 0 < k< 2m, it follows that n =1
k=
Thus sin (x + k) = sinx implies that sin (n + x) = sinx which is a contradiction.

Therefore 27 is the smallest positive number for which sin (x + 27) = sinx, for all x and
consequently 2 is the period of the sine function.
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From cos (x+2m) = cosx and tan (x+7) = tan x it follows similarly that periods of cosine
and tangent functions are respectively 2n and ©

cosec x and sec x being respectively reciprocals of sinx and cos x have period 2. For the
same reason cot x has period 7 as tan x. For the same reason cot x has period as tan x.

This means that sin x, cos x, sec x and cosec x repeat their values at internals of 27.
Also tan x and cot x do the same at intervals of w.

The periodic property of trigonometric functions is of great advantage in mathematics.
We shall make use of periodicity to sketch the graphs of trigonometric functions.
Ilustration : Refering to Section 3.5 of Ch-3 on periodic functions you can prove that cos3x as

) 27
well as sin3x has period 3

Exercise :
Find periods of :
(7) Sin5x, (i) Cos6x+Sin9x.
Also verify that Cos x*is not periodic.

[DE=NUES
Graphs of Trigonometric Functions
Graph of y =sinx

Since the function has period 2, it is sufficient to choose an internal of length 27 and study the
behaviour of the function. We take the internal (-rt,7). You can choose any other interval also; simply
its length has to be 2x.

We make the following observations:

(1) For -n<x <-7,, sin x decreases from 0 to -1,

T
For - Es x <0, increases from -1 to 0,
72- 0
For0<x< X increases from O to 1, and

T
For 5 <x <m, decreases from 1 to 0.
(ii) \ sin x \ <l1,1e. - I<sinx <1, so its graph lies
between the lines y=-1 and y=1.

Later it will be proved that sinx is a ‘continuous function’, which means that its graph has no
breaks and it takes all the valus between -1 and 1

Actually for graphing a function several other informatins are necessary and at times essential,
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but we cannot have access to those at present and we proceed with this much of informations.
With these informations we sketch the graph of y =sin x, as given in the figure.

(In all the graphs the argaments ‘x” and functional values °y’ are plotted respectively along
x and y-axes.

Graph of y=cos x
In the interval [ -, 7]

(i) For-n<x <0, cox x increases from -1 to 1 and

for 0 <x <=, decreases from 1 to -1
T

Fis
Is0 =-— -
cos x equals 0 at x 5 and 5

(i) 1cosx1<1, This graph also lies between y=-1 and y=1. As in case of sin x, cos x also

takes all the value between -1 and 1.
N.B. By periodicity the graphs of sin x and cos x can be symmetrically extended beyond = and -m.
Graph of y = cosec x

(1) cosec x is not defined at x = -«t, but nearer and nearer we take the values ofx to -, in

T
(-m,- 5 ), limitlessly larger becomes the absolute values of cosec x and its sign remains

T
negotive, At x = " cosec x=-1

b
This phenomenon is stated precisely as cosec x increases from-co to -1 in the interval (—ﬂ 7 5}

T
(i) It decreases from-1 to -0 in [—5,0]

and is undefined at x = 0.

T

T
(i) It decreases from oo to 1 in [05} and again increases from 1 to « in [E”J and is
undefined at x = 7.

The graph can be symmetrically extended for both right and left by periodicity.
Graph of y =secx

T b/
(i) sec x decrcases from-1to -ooin | —7>~ | and is undefined at x=- —
2 2

T /s
(i) It again decreases from oo to 1 in [—5:0} and increases from 1 to oo in [05] and is

T
undifined at x = E'



| Trigonometric Functions 97 |

T
(i) It increases from -ooto -1 in [Eﬂ'}

Based on these observations the graph is sketched in the figure.
Graph of y =tan x

T T T
tan x is not defined at - 5 and 5. It increases from -oc to 0 in (_5»0} and then from 0 to «©

T
in [OEJ . The graph is shown in figure.

The graph of'y = cot x can be similarly sketched.

Sketch of the Graphs.
(%&,IV 1\.7’ A‘y b
N, o8, ) }
* = o % '\"
£ i y=-i
% e (:,: ch)y )4‘ / 5, .
L - ‘x Y 7
re N ~ - [ ] K
— 2 - / % % e r " 7 3
- 5= —
' %% (L9 e
Fe—g 'z ¥ * f4
= - v " .
Rl (3= Cocx ) y=r (= -1 Q:'ta.h'x) ; b __!:il)"i Q =Gﬂ}

(y=$c:x)

Example 4 :

sin A .sin2A +sin3A.sin 6A
sinA.cos2A +sin3A.cos6A

Prove that =tan SA.

sin A sin2A +sin3A . sin 6A

Proof: LH.S.= G1'A cos2A + sin 3A.cos6A
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2sin A.sin2A +2sin3A.sin 6A
2sinA.cos2A +2sin3A.cos6A

CoS(2A —A)—cos(2A+ A) +cos(6A —3A) —cos(6A +3A)
sin(2A +A) —sin(2A — A) +sin(6A + 3A) —sin(6A —3A)

c0sA —cos3A +cos3A —cosYA
sin3A —sin A +sin 9A —sin3A

A—cos9A
= CnOA—enA  (Apply(10)and (11)

_ 2sinSAsindA _ o, _
= 5 cosSA sndA _tanSA=RHS.  (Proved)

Example S :

Prove that

c0s2A + ¢c0s2B +¢c0s2C +cos 2(A+ B+ C)=4cos (B+ C) cos (C+A)cos(A+B)
Proof : L.H.S. =c0s2A +c0s2B + cos2C+cos 2(A+ B+ CO)

= (c0s2A + ¢c0s2B) + {c0s2C +cos2(A+B + C)}

=2c¢cos(A+B)cos(A-B)+2cos(A+B+2C)cos(A+B)

=2c¢os(A+B) {cos(A-B) +cos(A+B+2C)}

=2cos(A+B).2cos(C+A)cos(B+0O)

=4 cos(A+B)cos(B+C)cos(C+A)=R. H.S.

Example6 :
Prove that
i) sin2A= 2804 (12)
I+tan” A
2
(i) cos2A= %. (13)
I+ tan
Proof :

()  sin2A =2sinA. cosA

Smﬁ.COSZA=2 tar12A _ 2tan? .
cos secA  l+tan” A

(i) cos2A =cos’A —sin’A

)
= C0os?A — cos?A . sin” A
cos2 A

2
= cos? A (1 —tan?A) = (1 —tan?A) / sec’A= l—tanzA _
I+tan” A
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Example 7 :

Find the value of'sin 18°, cos 18°, sin 36° and cos36°.
Solution :

We know that cos (3 x 18°) = cos 54° =sin36° = sin (2 x 18°)

= 4¢0s’°18°—3 cos18° =2sinl8° . cosl8®

= cos 18° (4¢c0s?18°—3 -2 5inl8°) =0

= cos 18° (4sin’18° + 2 sinl8°-1) =0

=4sin’ 18°+2sin18°—-1=0 (-- cos 18°=0)

1445
4

= sinl8° =

-1

4

. o 1
Againcos 18°= /1 _<in218° = 4 V104245 -

Using the equation sin (3 x 36°) =sin (2 x 36°)

we can deduce cos 36° = ‘/§4+1 , sin36°=% J10=24/5 -

Example 8 :
Prove that sin 56 = 16 sin’0 — 20 sin’0 + 5 sin6
Proof : sin 56 =sin (36 + 20)
=sin30 . cos26 + cos36 . sin26
= (3 sin® — 4 sin’*0) (1 — 2 sin’0) + 4 (cos’0 — 3 cosh) 2 sinf. coso
= (3 sinb — 4 sin’0) ( 1 — 2 sin*0) + 2 c0s?0 sinbd (4 cos?6 — 3)
= (3 sin® — 4 sin’*6) (1 — 2 sin?0) + 2 (1 — sin’0) sind (1 — 4sin’0)
= (8 sin’0 — 10sin’6 + 3sin6) + 2 sind (4sin*6 — 5sin’0 + 1)
=16 sin°0 — 20 sin*0 + 5 sin6.

But sin 18° is positive. Thus sin 18° =

Example 9 :
Prove that
_ _ 2tan4
§)) sinA = A (14)
I+tan™ -
2
1- tan2 %
(ii) CosA= A (15)
I+tan™ -
2
Proof :

Replacing 2Aby Ain (12) and (13) we get (14) and (15).
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Example 10 :

Given sinA, find sin A , COS % and tan ‘; .
Solution :

We know that
. A A o

2 sin 5 - C0s % SinA

2 A 2 A _

Sin 3 + CoS D) 1

A AY
so that (sin7+cosj) =1+ sinA

:>sin% +cos% =+./1+sinA

A A
Sm? —COoS 7 =+ 1_SinA

. A 1
=sin% =75 {EJ1+sinA £J1-sinA } (16)
A _ 1 : .
C057 _i{i\/l‘FSll’lA iJl_SmA} (17)
The appropriate sign for R.H.S of (16) and (17) is taken in the following manner.

A A _ L (ALT
sm2+cosz—ﬁsm(2+4)

Ifthe range of A is given then one can find out the quadrant in which (% + %) or (% - %)
lies. Thus the sign of sin % + cos % and sin % —Cos % can be determined.
A
A _S" _ sinA sin A
Againtan 5 = = % =
2 1 A
cos% eos 1+v1-sin” A

Example 11 :

Given cosA, find the values of sin % ,COS % and tan % .
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Solution :

2 2

A _ |1-cosA

=sin 5 =% s (18)
A _ /1+cosA

Cos 5 =7 —> (19)

We know that sin® L % (1 -cosA), cos’ A % (1+cosA)

sin%
A _ /l—cosA
tan 5" = cos‘g‘ FVT+cosA - (20)

In particular cases + sign is replaced by a single sign applying ASTC rule.
Example 12 :

Given tanA, find tan % .

Solution :
2 tan‘;
We know that tanA= — <
1- tan2 A
2
:>tan2% +2c0tAtan% -1=0 (21)

There are two values of tan ‘g , when tan A is given. They are the roots of the quadratic

equation (21).
Example 13 :

Find the values of'sin 22% and cos 22 % .

Solution :
From Example 11 we have

/1 cosA

Putting A=45°we get

sm22 1/ (1—cos45°) (2- ﬁ)
c05221 1f—(1+cos45° -1 (2+\5)
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22 B 1s in first quadrant. So + ve sign is taken.
Example 14 :
Prove that sinx =2 cos% cos-X . cosis ... cos== sin-*- where 7 is a positive integer.
22 2 211 21’1
Proof: We have
sinx =2 sin 2 . cos >
2 2
. X _ . X X
sin 5 =2 sin . cos
2 22 2
X — X X
sin 2—2 2 sm23 cos )3
sin x_l =2sin X . cos
2 Hn on
Thus sin x = 2" cos % cos % cos % ....COS = sin .
2 2 2" 2"
Example 15:
IfA+ B+ C =mn, prove that
(1) sin2A+sin2B +sin2C=4sinA. sin B. sin C
(i) cosA+cosB —cosC=4cos % Acos % B. sin% C-1
(i) sin*A + sin’B + sin’C —2 cos A. cos B. cosC =2
. 1 1 1 ~_ T+A n—-B n+C
(iv) cosZA—c052B+c052C—4cos 4 COos —;— cos —
Proof :

(i) L.H.S.=sin2A +sin2B +sin 2C
=2sinA.cosA+2sin(B+C).cos(B-0C) [Applying (8)]
=2sinA. cosA+2sinA. cos (B-0C) [sin (B + C) = sin (1 —A) =sinA]
=2sinA {cosA+cos(B-C)}
=2sinA {cos (B-C)—-cos(B+(C)}
=2sinA. 2 sin B.sin C=4sinA. sin B. sin C=R.H.S.

(i) L.H.S.=cosA+cosB—-cosC
=1+cosA+cosB-cosC-1

=2 cos> = +2sin -1

2 2
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~A+B+C=mn
=2cos’ 5 —2cos 5 .sin BEC—I [SB;C_g_%
=2c05%(cos%—SmB5C) |
—zcos% (smBerC—sinBZC) -1
—2COS% .2 cos 5 sm% — 1
=4cos%.cos%.sin%—l=R.H.S

(i)  L.H.S.=sinA+ sin’B + sin’C —2cos A . cos B. cos C

=]1—-cos’A+1—-cos’B+1—-cos’C—-2cosA.cosB.cosC
=3 —c0s*’A — cos’B — cos*C -2 cos A. cos B. cos C

= % [6 —2 cos’A—2 cos’B — 2 cos*C —4 cos A. cosB. cos C]

%[6 (1 +¢c0s2A)— (1 +¢0s2B) — 2 cos?’C — 4 cos A. cos B. cos C]
%[4 (cos2A + cos2B) —2 cos?’C —4 cos A. cos B . cos C]
%[4 2 ¢cos (A+B)cos (A-—B)—2cos*C —4 cos A. cos B. cos C]
%[4+2cochos(A B) — 2 cos*C —4 cos A. cos B. cos C]
% [4+2cosC {cos (A-B)+cos(A+ B)} —4 cosA. cos B. cos C]
_ 1 [4+4cosA cos B. cos C—4 cos A. cosB. cos C]
—2—R.H. S.
. _ 1, 1 1
(iv) L.H.S.—coszA coszB+c052C
—_2sinA+B G A-B o, A+B
4 - 4 2
—_osn2+B G A-B 5 nA+B A-B
4 - 4 4 - 4

A+B A+B .. A—B]
in = (cos 1 sin i
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. A+B) . A—-B
{sm(z 1 ) sin=— }

n—-B . m-—A
7 - sin T

>
+
oy

=2 sin

>
+
ool

=2 sin X 2 cos

+ &

=4 sin

~
O
]
7]

~
2]
=

=4 sin —C cos sin
A i

_4 (E_TE—C) n—B [E_n—A)
=4 COS 2 4 COS 4 COS D) 4

T+A n—B n+C _
i

=4 cos

Example 16 :

Find the maximum and minimum values of3 sinx + 4 cos x.

Let 3 =rcosa, 4 =r sina,

so that 7= V3% +4% =5.

Now 3 sinx +4 cos x=r (sin x cosa + cos x sin o) =5 sin (x + o).

We know that the maximum and minimum values of sin (x + o) are 1 and — 1 respectively.

Thus the maximum and minimum values of 3 sinx + 4 cos x are 5 and — 5 respectively.
Example 17 :

4 4 cos? sin”
If =252 4+ SIS — 1 show that 2B : 2B =1
cos“pB  sin“ B cos“o  sin“
Solution :
Let cos?a = x and cos?p =y, then

cos? o sin? o

+ . =1
cos? B sin’ B

)
4 =
y 1-y
=X —xy+y—2xy+xly=y -
=>x-y)7=0 =S>Xx=y
= cos’a = cos’p thus sin*a = sin’f

1

cos? B sin* B costa sinta
Therefore, —5—+——> =" 5, +— 5 =1L
cos“o  sin“a  cos“a  sin“a
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Example 18 :

Ifsin 0 + cosec 0 =2, show that sin"0 + cosec"0 =2 for all positive integers ».

Solution :

(i)
(i)
(iii)
(iv)
V)
(Vi)

(vii)

(viid)

(ix)

(x)

sinb + cosec 6 =2
=sin’0—-2sin0+1=0
=(1-sin0)*=0

=sin0=1 socosecO=1

.. sin"0 + cosec™® = (1)* + (1)* = 2.

EXERCISES 4 (b) |

In the following questions, write T for true and F for false statements.
Iftanx+tany=>5and tanx. tany = % then cot (x +y) = 10.
J3 (I +tan15°)=1—tan 15°

If 0 lies in third quadrant, than cos 9, sin % is positive.

2
2 sin 105°, sin 15° = %
Ifcos A= l,cosB=lthentan A+B .tan A-B =1.
2 2 2
cos 15°cos7! sin7lo =1
2 2 )

sin 20° (3 — 4 cos*70°) = g

J3 (3 tan 10° —tan*10°) = (1 — 3tan? 10°).

(2,1
2tan72 (1 tan 72)

) lo =1.
(1+tan 72 J

The minimum value of'sin 0 . cos 0is (—1)%

2. Inthe following questions, fill in the gaps with correct answer chosen from the brackets.

(M)

If cand B lie in first the second quadrants respectively, and if sino.= % ,sinf= % , then sin
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V2 1 V2 2)
+B) = —m— — 2 L =T a
(atf) - (zf SN RPN
. 1 1 TN n
(ii) Iftanazi,tanBZ g,thenoc+[3=——, (E,Z,?)
c0s15°+sin15° _ V3 3 1
@) The value of cosl—smls 5 V3, ﬁ]
. 1+SiIlA= l-sinA . 1 \/E—l\/i+l
(iv) If cosA J2 + 1, then the value of cosA_ S (—2 ot .
in 105°. cos 105° = 14 —lj
(v) sin . COS =— 2° 47 2
- TR L Ly L _1+L]
(vi) 2 sin 67 5 cos 22 5 ( NeRaiNG) NG
(vii) sin35°+cos 5°=—— (2 cos 25°, /3 cos 25°, /3 5in25°)
. . 541 +/5-1 4/5-1
(viii) sin*24° — sin*6° = ——— (\/_8 ) \/_8 , I4 J
1
(i) sin70° (4 c0s*20° —3) = ——— (‘f =3 )
(x) cos 36+ sin 360 is maximum if 6 = —— (60°, 15°, 45°)
(xi) sinl5°—cosl15°%is———. [% , 0, Positive, Negative|
(xii) If 6 lies in the third quadrant and tan6 = 2 then the value of sinf is —.
(; 12 _LJ
NERENCRRNE RN
(xiii) The correct expression is ———.
(sinl1°>sinl, sinl1° < sinl, sinl1° =sinl, sinl° = 180 sinl)
(xiv) The correct expression is ——— .
(tan > tan 2, tan! < tan2, tan 1 = 3 tan2, tan1 <0)
3. Prove the following :

(i)

sinA. sin (B— C) + sin B sin (C —A) sin C. sin (A—B) = 0

(i) cosAsin(B—C)+sinBsin(C—A)+cosCsin(A-B)=0
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(iii)

(iv)

sm(B-C)  sm(C-A)  sm(A-B) _
sinB.sinC ~ sinC.sinA  sinA.sinB
oA (a — SINCA+ B)sin(A —B)

cos2 A.cos2 B

4.  Prove the following :

(M)

(iii)

V)

(vi) tan 10°+tan35°+tanl0°. tan35° =1.

0

tan 75° +cot 75° =4 (i) sin’18° + cos?36° = %
: : : 3-1
sinl8°. cos 36° = % (iv) sinl5°= ‘/_7\/5
us T _ N €089°+sm9° °
cot 8 tan 8 2 (V) €089°—s1n9° tan54

5. Prove the following :

(

)

i)

(iii)

)

(vii)

(ix)

(xi)

(xiv)

(xv)

2
cot2A = SO"A -1

2cotA ()
sin2A +sin2B _ an(A +B) W)
sin2A —sin2B  tan(A —B)
sin2A +sin5A —sinA .
C0S2A 1 0S5A fcosA | AR2A (V)
cot A—cosec 2A=cot 2A (viii)
tand (1 + sec 20) = tan 26 x)
sin 50° —sin 70° + sin10° =0 (xii)

8 sin 10° . sin 50° . sin 70° =1

smB _ sin(ZA +B)

smA sin A —2cos(A+B)
cotA—tanA _
COtA +tanA Cos2A

cotA—tanA=2cot2A

% =sec 2A —tan 2A
sinA+sinB:tanA+B cot A=B
sinA —sinB 2 2

cos 80° + cos 40° —cos 20° =0

4 sin A sin (60° — A) sin (60° + A) — sin 3A=0

tan3A—tan2A—-tanA=tan3Atan 2Atan A
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6. Prove the following :

. A [ [l=cosA . [1+sinA _ n, A
(1) tanj—( 7l+cosAJ (i1} 1_Sm—tan (4+2)
1+ tan% 5
ey ———— ) . _ n. .Y
(111) l—tan% =sec A +tan A (ivy secH + tanf = tan (4"'2)
A _  sinA
(V) col 5 = T CosA -
7. Find the maximum value of the following.
(1 Ssinx+12cosx
(i) 24 sinx—7cosx
@) 2+3sinx+4cosx
(iv) 8cosx—15sinx—2.
8.  Answer the following :
(1) Iftan A= % tan B = % and A, B are acute, show that A + B =45°,
(i) Iftan6 = %, find the value of a cos 26 + b sin 26.
(iii) 1fsec A—tan A= % and 0< A <90° then show that sec A= > .

(iv) Ifsine+sin<|>=aandcos9+cos¢=b,thenshowthattan% O+¢)= %.

asinx+bsiny
acosx+hbcosy >

(v) Iftan6= then show that a sin (0 —x) + b sin (0—y)=0.

(vi) If A+ C =B, show that tan A. tan B. tan C =tan B — tan A — tan C.

(vii) Iftan A= tan B = % show that cos 2A = sin 2B .

1

5 bl

(viii) Ifcos 2A = tan’B, then show that cos 2B = tan’A.
In ABC, prove that

B+C_ A
3 CO‘[Z.

(x) cos(A+B)+sinC=sin(A+B) —cosC.
IfA+B+C=mnand cos A=cos B . cos C show that (xi and xii)

(xi) tanB+tan C=tan A

(xii) 2cotB.cotC=1.

(ix) tan
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9. Prove the following :
i) cos(A-D)sin(B-C)+cos(B—D)sin(C-A)+cos(C—D)sin(A-B)=0
(i) sin2A+sin2B +sin2 (A—B)=4sinA. cos B. cos (A-B)
(i) cos2A+cos2B+cos2(A—-B)+1=4cosA.cosB.cos(A-B)
(iv) sin 2A+sin 2B + sin 2C —sin 2 (A + B + C) =4 sin (B + C) sin (C + A) sin (A + B)
(v) sinA+sin3A +sin SA=sin3A (1 +2cos 2A)
(vi) sinA-sin3A+sin SA=sin3A (2 cos2A-1)
(vii) cos (A+ B) +sin (A-B)=2sin(45°+ A) cos (45°+ B)

(Vlll) COoS (120 © +A) COS (120°_A) + Ccos (1200 +A) cos A+ COSA(COS IZOO—A) + % -0

(ix) cos4A—cos4B =28 (cosA—cosB)(cosA+cosB) (cos A—sinB) (cos A+ sin B).
10. Prove the following :
1-tan? (45°-A)
1+tan(45°-A)

sin 2A

(1)
(i) cosA+smA  cosA-smA
cosA —sin A cosA +sinA

(iii) 1—cos2A +sin2A
1+cos2A +sin2A

) sin(A + B) + cos(A —B)
(V) Sin(A —B)+cos(A + B)

=2 tan 2A

=tan A

=sec 2B + tan 2B

cos7a + cos3o —cosSa — cosa

v) sin 7. — sin 3o — sin Sa + sin o = cot 2a.
(vi) sin 0 +sin 30 + sin50 + sin 70 — tand0
cos0 +cos30 +cos50 +cos76

11. Prove the following :
(1) Express 4 cos A. cos B cos C as the sum of four cosines.
(i) Express cos 2A + cos 2B +cos 2C + cos 2 (A + B + C) as the product of three cosines.

12. Prove the following :
(i) cos®A — sinSA = cos 2A (1 —%Sillz 2A)
(ii) COSSA + sinA = % (1+3 cos? 24)
(iii) cos’A. cos 3A + sin*A. sin 3A = cos’® 2A

(iv) sin'0 = % — % cos 20 + % cos 40
cot’ A —3cotA

3(:0t2 A-1

(v) cot3A=
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4tan0—4tan> 0
1—6tan26+tan49

(vi) tan46 =

1 1
tan3A —tanA  cot3A —cotA

(vii) = cot 2A

(viii) cot A B tan A _
v cot A —cot 3A tan3A —tan A

13. Find the value of sin3°, cos3°, 2 sin 32

14. Ifsin A + sin B =a and cos A + cos B = b, show that

(i) tan (A +B) = 2“‘2 _

(i) sin (A +B) = 2”5,
+a”

(iii) cos (A+B)=L=a" —a
b% +a?

15. Prove the following :

1+sinA —cosA =1 A
1+sinA +cosA 17

()

(ii)) 8 sin* ie 8511121

3 29+1—c0526

n W 3n W5 JIn _ 3
(iii) cos* 8 + cos* ] + cos* ] + cos* R "9

(iv) cos’% (l — 2 cosa)® + sin (1 + 2 cosa)’ = 1.
16. Prove the following :

(i) sin 20° . sin 40°. sin 60° . sin 80° = 3

16
(ii) cos 36°. cos 72°. cos 108°. cos 144° = %
(iii) cos 10°. cos 30°. cos 50° . cos 70° = %
(iv) cos 20°. cos 40° . cos 60°. cos 80° = %

(v) tan 6°. tan 42°. tan 66°. tan 78° =1

{Hints : Use the identity tan 3A = tan A tan (60° —

A) tan (60° + A)}.
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17. Provethe following :

(1)

(ii)

(iii)

(iv)

(v)

18. (i)

(i1)
(iii)

(iv)
(v)

(vi)

19. (i)

(i)

(iii)

(iv)

(v)

col? = J6+\3+42+2
c0122 \/_+1

col%?l =V6-3-42+2
lan%?z—\/ng\/_ V2-2

1
cos % ) 24+/2+4/2 -

If sin A = K sin B, prove that tan 2 (A-B)= -1

K+1

tan 5 (A +B).

If o cos (x + o) = b cos (x —a ), show that (a + b) tan x = (a — b) cot a.

An angle 6 is divided into two parts o, B such that tan o : tan p = x : y. Prove that

sin (o — pB) = x+§ sinf.

sin——— cOSs I o
If sin 0 + sin¢=a,cose+cos¢=b,showthat—2272_ZCOS 2
a

If a cosa + b sina. = ¢ = a cosp + b sinp then prove that

a b . c

cos%(aﬂi) - sin%(oc+[3) COS~ (a B)

n . . n
Prove that (w) (M) =2 cot” A—B or zero according as »
sinA —sinB cosA —cosB 2
is even or odd.
B coso —e¢
If (1- e)tan®*y = (1 + e) tan’ 2 prove that cos = 1 ecosa
_ _cosA —cosB 0 . A B
Ifcos 0= 1= cos A cosB Prove that one of the values of tan 7 is tan 5. cot 5.
sinx.sin y 1. 1 1
Iftan 6= "\ cosy cosy ,then prove that one of the values of tan 3 0 is tan S X tan 5.

If sec (¢ + a) + sec (¢ — a) = 2 secd, show that cos = *,/2 cos%

If tan A + tan B =a and cot A + cot B =5, then show that cot (A + B) = % - %
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2sinx . siny

(vi) Ifcot 0= cos(x+y)and cotd=cos(x—y) show that tan(0—¢) = > -
cos“x + cos”y

n? sin o . cos o taﬂ(ﬂ_ﬁ)_l "
EETe— .

vil) Iftanp= , then show that
(vii) P 1-n? sin’a tan

sin 2
(viii) If 2 tan o= 3 tan p, then prove that tan (a— ) = 37, —cosBZ[} .

. 3cos2p -1
(ix) Ifa,p are acute angles and cos 2o = 3 —cos2p then prove that tan o = V2 tanp.
20.If A +B + C =n, then prove the following.
(1) cos2A+cos2B+cos2C+1 +4cosA.cosB.cosC=0
(i) sin 2A + sin 2B — sin 2C = 4 cos A. cos B. sin C

(i) cosA+cosB+cosC=1 +4sin%A. sin%B. sin %C

(iv) sinA+sinB-sinC=4sini A sindB.cos 2C

(v) cos?’A + cos? B + 2 cosA. cosB. cos C = sin’C

. ., A ., B ., C . A . B . C
248 2 D 2~ 1 fa D A
(vi) sm2+sm 2-i-sm2 1 25m2.sm2.sm2.
(vii) sin% +sin% +sin%=4sinnzA sinnZB. sinnZCJrl.
A B C A B . C
288 2 D 2 & o LD L
(vill) cos 2 + Ccos 5 cos 5 2cos2 .cos2 .sm2
(ix) sin (B + 2C) + sin (C + 2A) + sin (A + 2B) = 4 sinB=C _ sin S sin 28
2 2 2

n
21. (i) Show that (2 cos 6 — 1) (2c0s 20—1) (2 c0s220 1) ..... (2 cos 2> 0 —1) = %J_’Jl.

(ii)) Show that 2" cos6 . c0s26. cos2?0 ..... cos2m'o =1, ifo= nn )
2741

n
(iii) Prove that tat?u%ee = (1+ sec 20) (1 + sec 220).....(1+ sec2"0).

22.If x + y + z = xyz, prove that

) X LY Lz _ 4xyz
W 922 157 12 a=Da— -2y
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(i 3x —x° 4 3y—y3 4 32—z _ 3x —x7 3y—y3 37—
1-3x7 1-3p%  1-322 1-3x7  1-3y%  1-3z%°
(Hints: Put x=tana,y= tanfz= tanyand get a+ f+y=mn)
23 If Sil’l4(l cos4a _ 1 h h Sil’lg(l + COSSOC _ 1
. + = , show that 3 3 T
a b atb a b (a +b)

4.4 Trigonometric Equations

Equations involving one or more trigonometric functions of a variable are called trigonometric

equations.

sin x = = @

T2
cosx = ﬁ (i1)

2

sec x = 1 (iii)

2
tan x=tan o (iv)
sinx=35 )

are examples of trigonometric equations.
The solutions of an equation are those values of x which satisfy the equation.
A trigonometric equation may or may not have a solution. The equations (iii) and (v) have

no solution.

Let us discuss about the solution of the equation sinx = % . The solution of this equation

are the abscissae of points of intersection of the curve y = sinx and y = % as shownin fig 6.7.
Two cases may be considered.

Case 1-Ifx € [0, 27], then the solution set of the equation sin x = % is {%%{} .

Case 2 -1Ifx e R, due to the periodicity of sine function the solution set of the equation
is

T 5. X
{6’6 27 6

= {% +2nm, %‘ +2nm |n EZ}
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(@
(i)

-

Y

|
— [N /
> DT ,/’, —3 X

AN ! >
x’tf \ 0 l‘-__ YA Sin X
\/ 6 T %—‘ ¢
=

Solutions of a trigonometric equation can be classified into two categories.
The solutions considered over the entire set R are called general solutions.

The solutions restricted to the set [0, 2x] are called principal solutions.

Note that the solution set of the equation sin x = % occuring in case 1 consists of

principal solutions and those occuring in case 2 consist of general solutions.

The general solutions of some standard equations :

Theorem 3 :

(1)
(i)
(iii)
(iv)

The general solutions of :
sin x = 0 are xX=nmn,ne’l (1)
cosx=0are x=(2n +1)%,n eZ 2)
sinx= sinoarex= (-1)*a+nn, neZ 3)
cosx=cosoaarex=2nnt a.,n el 4)
tanx =tanoaare x=nn+ta,n el (%)

(v)

where o is a constant.

Proof :(i) and (ii) are obvious :

(iii) sin x = sin o

= sinx — sin o= 0

xX+o . X -—0O _
= 2 coS 5 - SinT— =0

X+0o _ . X — o _
= COS 3 = (0 or sin 3 =0

:>x;“=(ﬂwqygorx;‘*=kmkezommﬂmamOfu)mm(m)
=>x= Rk+1)n—aorx=2knta,keZ
Sx=(1)%" o+ (2k+ Drorx= (- 1)* a+2kn, k eZ

=>x=(D)"a+nnnel
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(iv) cosx=cos a
=cosx— cosa=0
X+o . X —

251112=()

=-—2sin

. X+o _ X — o
:smT—Oorsm 3 =0

XFOQ oy X
2 2

=

Sx=2nn—a,0rx= 2nn+a,n el
>x=2nnta, n €Z.
(v) tanx =tan o

sinx _ sina
COoS X COS O

= sinx. acosa—cosx. sina=0 =sin (x—a)=0

= x—a=nn,ne Z (with the aid of (1))

=Dx=nntaoa,nel.

Example 19 : Solve

(1) sinb=1 (i) cos 6=1
Solution :
(i) sin0=1 = sin 0 = sin~

2

0= (—1)1% +nmnel.

(i) cosOB=1 = cost =cos 0
=0=2nn+0
=0=2nnnecl.

:>tane=tanE

(iii) tan®=1 1

=0= nn+% ,nel.

Example : 20 : Solve : cos 6 + cos 20 + cos 30 =0

Solution :
cosf + cos 20 +cos36=0
= c0s 20 + cosb + cos 36 =0
=¢c0820+2cos20.cos0 =0
=c0s20 (1 +2cosB) =0

=nn, n € Z (with the aid of (1))

(i) tan 6 =1

(Using formula (3))

(Using formula (4))
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=c0820=00r 1 +2cos0 =0

= c0s 20=0 or cosd =—% :COSZ?TE
2n+1
:29=@ 0 —2nn+%" [Using (2) and (4)]

:>9=(2n+1)% ore=2nni%,nez

Example 21 : Solve : 2cos?0 +3sin6 =0
Solution : 2cos?0 + 3 sin 6 =0

=2-2sin*6+ 3sin6=0

=2sin’0 —3sinf-2=0

= (sind — 2) (2 sind +1) =

= sin0 = 2 (impossible) or 2 sin +1 =0

o= Lo gin IR n LB = —_pr o1
:sme——2 sin —¢ [ sin—¢ sm(n+6) —sin-g —2]
=0=( 1)n +mt nelr.

Example 22 : Solve a cos6 + b sin 6 =c, (c <Va?+b? )

Solution :

Leta=rcos a, h=rsina,

then = Va? +b* _tana= %.

The equation reduces to » cos o . cos 0 + rsina. sin 6 = ¢
=rcos(0—a)=c

= cos(0—a)= %=;sl (-,-cg\f02+b2)
\)a2+b2
:cos(e—a)=cos[3[takingcos[3=#]
2, .2
a“+b
=0 —a=2nn+p

= 0=2nn+aztP,nel
Example 23 : Solve cos 6 + /3 sin 6= 2.

Solution :
Comparing this with the problem of previous examplea=1,b= /3 ,c=2,

we gel ¥ = g2 +p> =4 =2 and
f

tan o = = /3 which gives o= %
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The equation reduces to rcos (6 —a)=c

= 2 cos (9—%)=2 = COS (9—%) =cos 0

n eZrz.

:9—%221171, neZ =0 =2nn+=

’2 »
Example 24 : Solve rsin6=3 and r=4 (1 +sin0) forr=0,0 <0<2m.
Solution :

Eliminating sin6 , we have » = 4 (1"'%), orr—4r—12=0
= (r-6)(r+2)=0and
sincer =0, »r= 6.

Sm

SN | _n 5m
Thussm9—2:9 6" 6 -

EXERCISES 4 (¢)

1. Fill in the blanks choosing correct answer from the brackets.

(1) The number of solutions of2sin6—-1=01is . (one, two, infinite)

(i) Ifcosa=cospP,then a+p=___ .

(iii) The number of solution(s) of 2sec 6+ 1=01is ____ (zero, one, infinite)

(0,7, 2m)

(iv) Iftan ® =tan o and 90° < a < 180°, then 6 can bein_____ quadrant.(1st, 3rd, 4th)

(v) Iftanx, tan 2x. tan 7x =tan x + tan 2x +tan 7x, thenx =______ (Z’ §%)

(vi) For —— value of 6, sin® + cosé = /7 . (%

(vii)) The number of values of x for which cos? x=1and x> <4is_____.

(viii) In the first quadrant the solution of tan> 6 = 3is (%

(ix) The least positive value of 8 for which 1 + tan 6 =0 and +/2 cos + 1 =0 is

(TE 3n S_TE)
4

4 4>

(x) The least positive value of x for which tan 3x = tan x is —. (% % ﬂ)
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2. Find the princpal solution of the following equations :
(1) sinb=sin 26

(ii) J3sinb— cos0=2
(i) cos?@8+sinB+1=0

(iv) sindx +sin2x=0
(v) sinx+cosx= %

3. Find the general solutions of the following equations :

i cos2x=0 (i) sin (x° + 40°) = %

(i) sin 50 = sin 30 (iv) tan ax = cot bx
(v) tan®*30 =3.

4. Solve the following :

(i) tan® x + sec’x = 3 (i) 4 sin*x + 6 cos’x=15
@) 3sinx+4cosx=35 (iv) 3tanx+ cotx =15 cosecx
(V) cosx+ /3sinx=+2 (vi) sin 3x —2 cos’x =10
(vi) secO +tand= /3 (viii) cos 26 —cosd = sind — sin20
(ix) sin®+ sin 20 + sin 30 + sin40 =0 (x) cos 2x°+cosx°—-2=0
(xi) tan6 + tan 20 = tan 30 (xii) tane+tan(9+%)+tan(9+27“)=3
. 1
(xiii) cot*0—tan?0=4 cot 26 (xiv) cos 20=(2+1) (0059 _ﬁ)
(xv) secd—1= (2-1)tand (xvi) 3tan®0—2sin® =0
(xvil) 4 cos x. cos 2x. cos3x=1" (xvii)) cos 3x — cos 2x = sin 3x

(Xix) cosx + sinx = cos 2x + sin 2x

(xx) tanx+ tan4x +tan 7x = tan x. tandx. tan7x.
(xxi) 2(sec?6 +sin?0) =15

()Q(ll) sin2 x—3 sin x+ 1

(cosx) 2 2 =1

(Hints: cosx =0 andsinzx—% sinerEl =0)
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4.5 Application of sine and cosine formula (Properties of triangles)

In any triangle ABC, there are six parts. These are three sides and three angles. The
lengths of sides BC, CA and AB are denoted by a, b, ¢ and the angles Z.CAB, ZABC,
/BCA by A, B, C respectively. We know that sum of the lengths of two sides of a
triangle is greater than the length of the third one and the sum of the measures of the
angles is equal to © . These six parts are not independent of one another. Some important
formulae on the relationship between these six parts are given below.

Sine formula :

In any triangle, the lengths of the sides are proportional to the sines of opposite angles. i.c.
a _ b _ ¢
sinA  sinB sinC - (D
Proof :

Let us consider a tirangle ABC. it can be in three forms, viz. an acute angled triangle, an
obtuse angled triangle and a right angled triangle.

A A
A
b
C
’ b
B D 4 C T D B
(Acute angled) (Obtuse angled) B - a C=D
(Right angled)

From the vertex A, draw AD perpendicular to Q; )
In AABD,AD=ABsin B =c sinB (Inall the A's)
InAACD,AD =ACsin C=5 sin C (Inthe acute angled A)
AD=bsin(n—C)=hsin C. (Inthe Obtuse angled A)
S bsnC=csinB

b _ ¢

sin B sin C -

Similarly, by drawing perpendicular from the vertex B on CA we can show that

a — c

sin A sinC-

_ b _ ¢
sinB sinC-

a
Hence —
sin A

Further in the right angled A, C is a right angle.
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ssinA=4% sinB= Q, sinC=1=%
C C &
._a _ _b _ ¢ _ c
" sin A smB smC
. a _ b _ ¢
Thus in all cases, s A sSnB  smC-
Some Important results :
(1) InanyAABC, =% = b = € —9p whre
> sin A sin B sin C

R is the radius of the circumscribing circle of the AABC.
(2) If A denotes the area of the A ABC, then A= ‘A’r—l}? i

The proof of these two results are left as exercises for the readers.

Cosine formula :

In any ABC
at=b>+ 2 - 2bc cosA 2)
b’ =c¢? + a*—2ca cos B 3)
¢’ =a’ + b* - 2ab cos C. 4

Proof : Consider A ABC where C is an acute angle. By geometry,
AB?=BC?+ CA*-2BC. CD
= ¢’ =a’+ b*>—2ab cos C.
Considering A ABC where C is an obtuse angle,
AB? =BC?+ CA?+2BC.CD
= c¢?=a +b*+2abcos(n—C)
=a’ + b*—2ab cos C.
Lastly, considering A ABC where C is a right angle, AB* = BC?* + CA?
= ¢ =a’+ b*=2abcosC (- cosC=0)
Hence for all measures of C, ¢? = a* + b*— 2ab cos C.

Similarly other two relations (2) and (3) can be established.
Tangent formula :

B-C _ b-c .+ A

Inany A ABC, tan —5— = 7— 7 (3)
C-A _ ¢ —a B
tan 3 oTa cot 3 (6)

A-B_ a-b _C
tan =5—= 7 col5. (7
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Proof : In any A ABC, we have
b _ sinB
. Sin C (Formula (1))
B+C .B-C
b—c _ sinB —sinC _ 20 5 ST
= b +c sinB + sin C 25i11B+C.cosB_C
2 2
b—c _ B +C B-C
=3 he O Ty
b-c _ A B-C .. -
A tan2 tan 3 (+A+B+C=n)
B-C _ b—c _ A
= tan 5 b Te cot 5 -
Similarly the other two formula (6) and (7) can be derived.
The Projection Formula :
Inany A ABC,
a=5b cosC +ccosB (8)
b=ccosA+acosC %)
c=acosB+bcosA. (10)

Proof:

In the acute angled A ABC, BC=BD+CD=AB cos B+AC cos C

=a=ccosB+bcosC.

In the obtuse angled AABC, BC=BD-CD
=ABcos B-ACcos(n—-C)
=ccosB—bhcos(n—C)

=ccosB+bhcosC.

=a=c.cosB+bcosC.

In the right angled A ABC, BC=AB cos B

=sa=ccosB=ccosB+bcosC. (- cosC=0)

Thus in all casesa=c cos B + b cos C.

This proves (8).

Similarly (9) and (10) can be established.
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Area of a Triangle (Heron's formula);

The arca of a triangle is given by A = Vs (s—a)(s=b)(s—c)

where 2s =a + b + ¢ is the perimeter of the triangle.
Proof:

We know that the area of a A ABC is given by A= % ab sin C

= A =5 @b sin® C = 1 @ (1- cos’C)

= & @b (1- cosC) (1+ cosC)

a2 +b2 —02

Using cosine formula, 1 —cos C=1 —
2ab

_ P —@@-b)? _(cta-b)c-a +b)

2ab 2ab
_ (25-2b)(25s—-2a) _ 2(s—a)(s—h)
B 2ab B ab :
2s(s—c)

Similarly, 1 + cos C = A

Putting (B) and (C) in (A) we get,
2(s—a)(s—b) 2S(S c)
ab ab

2_1 a2h?

=s(s—a) (s—b)(s—c)=>A= \/S(S—a)(s—b)(s—c).

Theorem 4 :

(s=b)(s—c) C) _ [G-o—a) C)(S a)
sin - 2 bc

A_ [s(s—a) B_ [s(s— b) C_ s(s—c)
cos 5 be > COS5 = = ,cosz—
an = (s=b)(s—c¢) B_ [5=9)(s—a) , C_
ans s(s —a) a7 s(s —b) 'y
Proof :

A _ — b +02 —a
We h 2 = =1- A=1-27T¢ —d
e have 2 sin> cos T

a? —(b* +c? —2be) _ a* —(h—c)?
2 be 2 be

(a—=b+c)a+b—c) _ 2(s—b)2(s—c)
2bc a 2bc

(11)

(A)

(B)

©)

_ |s—a)s—b) a)(S b)

(s—a)(s—b) -

s(s —c)
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R O C YCEE NP S = Y=oy

(The positive square root is taken since% <909

i Ay _14 B2il-d’
Again 2 cos ) l+cosA=1 he

_ 2be+b* +c% —a? _ (bJrc)z—a2

2bc 2bc
_ (btcta)btc—a) _ 2s(2s—2a)
2bc 2bc

2 A _s(s—a) A _ [s(s—a)
= COS > T:C052 he .

sin-- — _
Now tan % = i = ‘f4(s b)(s=c)
cosj s(s—a)

Similarly the other trigonometric ratios for ?and % can be obtined.[

Corollary 1 :

sin A = 25— a)s—b)s—c) =22

sin B = %\/S(S_G)(S—b)(s—c) :g—g

sin C = = \fs(s—a)(s—b)(s—¢) =25

Corollary 2 :
A_ A B__A C__A
tan 5= S(S_a),tan 3 S(S_b),tan 3 s(5—0) -
Proof :
A \/(s—b)(s—c) _ [sGs—a)s—=b)s-¢) _ A
tan 5 s(s—a) s2(s—a)2 s(s—a) -

Similarly other relations can be derived.

Example 25 :
Show that in any triangle

a* (sin? B — sin’C) + b? (sin’C — sin* A) + ¢? (sin’A — sin’ B) = 0.
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Proof:

We have the formula —%— = .b = L= 1 where k& # 0 is a constant
sin A sin B sin C k

= sin A = ka, sin B= kb, sin C= kc.
Now LHS. =k a* (b’ —A)+E b (? —a®>)+ K 2 (a° -bY)
=k {a* (b’ —A+b(? —a*)+c* (@ —bh)}=k>x0=0=R.H.S.

Example 26 :
In any A ABC, prove that cos BEC = b;c sin %
Proof: RH. S. = bie gy A
a 2
_ 2RsinB +2RsinC . A (... a_ _ b _ ¢  _
- 2Rsin A SIS ( sin A sin B~ sinC 2R)
- B+C B —-C
_smB +smC . A _2sm 2 - €08 2 A
= —A .S1n ? = ) A A bll]?
Sm 2sm . cose
2 2
A B-C
_ COSE.COS 3 .. B+C _ A
A . sin > Cosj
C057

= CcoS BEC =L.H.S.

Example 27 :
If (a* + b?) sin (A — B) = (a* — b?) sin (A + B), prove that the triangle is either isosceles or
right angled.

Proof : (a*> + b?) sin (A — B) = (a®> — b?) sin (A + B)

sin(A +B) _ a® +b?
= sin(A-B) ~ ,2_p2

sin(A+B)+sin(A-B) 4%

= sin(A-B)-sin(A-B) ~ ;2

sinA.cosB sinzA

cosA.sinB  in’p (sine formula)

= sin A . cos B. sin’B — cos A. sin B. sin?A =0

— 1 sin A. sin B (sin 2B - sin 2A) = 0
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=sin2B—-sin2A=0 (- sinA= 0 and sin B #0)
=2cos(A+B).sin(B-A)=0
=2cosC.sin(A-B)=0

=cosC=0

=C= % so that the Aisright angled.

If sin (A—B) =0, then A =B, thus the triangle is isosceles.

Example 28 :
: ., C. .,A_b :
Ifinthe A ABC, a sin 7+csm 5= 2,thenshowthat a,b,careinA.P.
- L C, LA b
Proof: Applying theorem 13, a sin 5 Tesin ) =3
(s—a)(s—b) (s=b)s—=¢c) b
=da ab te be -2
s—b . _ b
= 2s—a-co)= >
=2(s-b)=b
=a+tc=2b. (-2s=a+b+c)

. a,band c are in AP.

EXERCISES 4 (d)

1. Fill in the blanks choosing correct answer from the brackets.

i InAABC, b=—. (bcosB+ccosC,acosA+ccosC,ccosA+acosC)
(i) IfacotA=bcotB,thenAABCis—. (isosceles, right angled, equilateral)
@) InAABCifhsinC+csinB=2, thendsinC=—— . (0,1, 2)

coaA _cosB _ cosC

(iv) InA ABCif P then the triangle is ———.
(equilateral, isosceles, scalene)
() IfsinA=sinBandb= 1, thena=——. (2,%,1)
(vi) InAABCifA=60°, B=45° thana:bh=—. (vV2:4/3,4/6:2,4/3:2)
(vi) InA ABCif h* + ¢* <a®, then—— angle is obtuse. (A, B, O)

_ _ ca c
(vi) IfacosB=bcosA,thencosB=—. (a’Zc’Za)
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(ix)
x)

If a=b cos C, than — angle is aright angle. (A, B,O)
Ifa=12,b=7,C=30° then A=——. (42, 84, 21)

2. Prove that

Q)
(i)
(iii)
(iv)
(v)
(vi)
(vil)
3. (i)
(i)
(iii)
(iv)
(v)

asinA—bsin B=csin(A-B).
bcosB+ccosC=acoc(B-C).
If(a+b+c)(b+c—a)=3 bc, then A = 60°.

bt+c_cta_a+b
5 6 7

IfA:B:C=1:2:3,thensinA:sinB:sinC=1: .3 :2.
If > + ¢ — a®> = be, then A = 60°.

If

,thensin A :sinB:sinC=4:3:2.

IfA:B:C=1:2:7 thenc:a=(V5+1): (V5-1).

_12 _ .
Ifcos A= 13 ,cos B= 13,thenﬁnda‘ b.

Ifa=7,b=3, c=235, then find A.

Ifa =8, b=6, c =4, find tan %

If—9 = b inda»b then find C.

secA secB

Ifa=48,b= 35 C= 60°, then find c.

In A ABC prove that (Q4 — Q 26)
4, asin(B-C)+bsin(C—-—A)+csin(A-B)=0.

sinB —C) _ b cosC — ccos B

sin(B+C) b cosC + ccos B~

6. 2.

a’sin(B —C) _

sin(B+C) 0.

7. a*(cos®* B —cos*C) + b* (cos®> C — cos?A) + ¢? (cos’A — cos’B) = 0.

2 2 2 2 2
— ) — ) -b- .
26 sin 2A + d bza sin 2B + a 5 sin2C = 0.

a C

az(b2+cz—a2) _ b2(c2+a2—b2) _ 02(a2+b2—02)

10. Y

11. (a
12. (b

sin2A sin2B sin2C

cosA  _
sin B. sinC

2B+ tanB = (> + b — ¢ tan C.
2—c?)cot A+ (c?—a?*) cot B+ (a*>—b?*) cot C=0.

b+c cosB + cosC

13.

a 1- cos A
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14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.
30.

31.

32.
33.

34,
35.
36.

37.

38.

Ya? sin(B—C)=0.

(b+c)cosA+ (c+ta)cosB+ (a+b)cosC=a+b+c.

2 (bc cos A+ ca cos B+ ab cos C) =a*+ b* + 2.
a(P*+c*)cosA+b(c*+a*)cosB+c(a*+ b?) cos C=3 abc.
a’ cos (B—C) + bh*cos (C—A) +c* cos (A-B) =3 abc.

a(cosB+cosC)=2(b+c)sin2%.

(b+c- a)tanA—(c+a b)tanB—(a+b c)tdn(z‘

(b+c—a) (COtBJF COt(Zj) =2a cot % .

(a — b)? cos? % + (a + b)? sinZ% =c%

A B_c¢
1—‘[a112.ta112 =5

(b—c) cot % + (¢ —a) cot g + (a—b) cot %=U.

2+b2+02

4A
a’ cot A+ bh?cot B+ c? cot C=4A.

If aic + bic = a+z+c , then prove C=60°.

Ifa=2band A=3B, find the measures of the angles of the triangle.

If a* + b* + c* = 2¢2 (a® + b?). prove that mZACB = 45° or 135°.

Ifx*+x+1, 2x+ 1 and x* — 1 are lengths of sides of a triangle, then prove that the angle of
highest measure, measures 120°.

IfcosB= ZS H;n‘% prove that the triangle is isosceles.

cotA+cotB+cotC=

Ifa tanA+bhtanB= (a + b) tan % (A+ B) prove that the triangle is isosceles.

If(cosA+2cosC):(cosA+2cosB)=sinB : sin C, prove that the triangle is either isosceles
or right- angled.

Ifcos A=sin B—cos C, prove that the triangle is right angled.

If a*,h?, c* be in A.P, prove that cot A, cot B, cot C are also in A.P.

If sin A : sin C =sin (A— B) : sin (B — C), prove that a*,5%, c* arc in A.P.

If the side-lengths a, b and c are in A.P., then prove that cos % (A—C)=2sin % B.

Ifthe side-lengths a, b, ¢ arc in A.P., prove that cot %A, cot% B, cot% CarcinA.P.
®



(CHAPTER 5)

Principle of Mathematical Induction

Believe nothing, merely because you have been told it, or because
it is traditional, or because you have imagined it.
- Buddha

5.1  Introduction
There are several principles guiding a mathematical proof. Mention was made in section
1.7, ofthe following principles.
(i)  Principle of syllogism.
(i) Principle ofreductio ad absurdum
(i) Law ofthe contrapositive.

The principle of syllogism is one ofthe oldest methods of direct proof. By repeated
application of this principle, the premises,

D Py Py > Dy P~ b,
lead to the conclusionp — p_

The principle ofreductio ad absurdum and the law of contradiction are instances of
indirect methods of proof the latter being a special case of the former. Earlier, we mentioned
the two laws : Law of the excluded middle and the principle of contradiction, which together
make up the axiom of negation. Both of these laws are implicit in the principle of reductio and
absurdum and also in the principle of syllogism.

Over and above these, there is another principle, called the principle of mathematical
induction, which comes handy on many occasions while dealing with propositions about
natural numbers 0, 1,2, 3,...... This principle is not deducible from the rules mentioned
carller. It is indeed an axion about natural numbers that was introduced by Peano (1889) and
also by Dedekind (1888) independently. (Ref. Real Number System in Appendix)

5.2 The Principle of Induction

If p_ is a proposition about a natural number n such that p, is true and the truth of
p, for any natural number n implies that of p_ ., then p is true for every natural
numbernrn .

Remark

(i) It must be borne in mind that the initial proposition need not always be P,. It can be any
p, and if the other hypothesis holds, the conclusion is valid for each natural number » > k.

(ii) One may try to prove the induction principle by arguing that sincep = p . forall n, the
truth of p,implies that of p, which, in turn, implies that of p, and continuing the argument, p, is
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true for each n. However, such an argument can not be sustained since our logical system
admits only arguments involving finite sequences of premises, and conclusions. This is not the
case with the principle of induction which involves, in reality an infinite sequence of premises as
well as an infinite number of conclusions.
(iii) In the induction hypothesis we verify p, to be true and then show that p, = p, . . without
taking into account the truth ofp ,p.,....p, ,. Insome situation p, = p,  cannot be deduced
without assuming the truthofp,, p,.....p, ;.

This situation is handled by a stronger version of the principle of mathematical induction
which we state below.

Ifp_is aproposition about a natural number » such that

(i) p,istrue

(i) for any ke N, (p,Ap, A-P3A....AD) = Py,
then p_is true for every natural number n.

In view of this stronger version, the previous principle is also called the principle of weak
induction. Example 3 illustrates the use of the strong induction. Example 1 and 2 use the
principle of weak induction.

In view of the peano-axiom on natural numbers, the set of natural numbers is the best
inductive subset of R, the set of real number. It may be mentioned that S — R is called an
inductive setif 0€S and meS implies m+1eS. Thus any inductive subset of R contains the
set ofnatural numbers.

Example 1
For any natural number n >1,

s [n(n+1):|2
...... n = >

P+23+33+

Proof : For any natural number nz I, Let p, denote the proposition

2
P+23+33+ +n3=[n(n+1)}
""" 2

L(+1)
2
complete the argument by induction, we must show thatp ., is true, that is,

2
Clearly p, : 13= [ } is true since each side is 1. Assume the truth of p . To
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B l:n(n+l)

2
5 } + (n+1)° (asp, is true)

=(n+1) {% +(n+1)}

n +4n+1) | 1+ D)2 (n+2)?
4 3

=(ﬂ+1){

2
|+ Dm+2)
- |

Sothatp . istrue whenever p is true.

So p, being true, it follows from this that p,, p, ... and in general p_is true for all n, thus the result

follows by induction.
Example 2 :

4"+ 15n—11s divisible by 9 foralln .
Proof :

Let p, denote the above statement. Clearly p is true since 4°+ 15.0 —1= 0 is divisible by 9.

Suppose that p_is true for any n. Then 4* +15n— 1 = 9m (say) for some natural number m.

Now
4+ 15m+1) -1
=4.4"+15n+ 14
=4 (4" +15n—1)— 60 n+4+ 150 + 14
=4.9m—45n+ 18
=9 (4m—5n+2)
and this is divisible by 9. Hence p_, is true. Now by the method of induction p_is true for all
n.
Example 3 :

Prove that every integer n > 2 can be factored as a product of primes.
Proof : Let p_be the statement :
Every integer n > 2 can be factored as a product of primes.
Forn=2, p, is true.

Assume that every integer k, 2 < k <n, can be factored as a product of primes, i.e. p, p,, p
L are assumed to be true....................... (1)

n—
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Now if nis prime, then # itselfis the only prime factor in its factorisation.

On the other hand if # is composite, let n = ab, whre a, b are integers such that 2 <a <nand
2 <b<n.Since a <n, by induction hypothesis (1), a is a product of primes. Similarlyb is a
product of primes.

Hence n =ab is a product of primes.

Thus p_is true for every integer #.

Example 4

Bernoulli's inequality
Prove that for everyx e R, x >-1;
(1+x)"> 1+ nx for every positive integer n.
Proof: Let P_denote the above statement.
Obviously P is true, Suppose P_is true for some positive integer n.
New, P, = (I+x)"z I+ nx
= (1+x0)™!'> (1+ nx) (1+x)

(Multiplying both sides by 1+x which is nonnegative, so that the inequality is preserved, by
properties of real numbers.)

= 1+(n+1) x + nx?
> 1+(n+1)x
= Pn+1 is true.

The result follows by induction, since P is true.

Exercise-5

Prove the following by induction :

nn+1)
1. 1+2+....... +n=
2
s 124024 Lo nn+1) Cn+1)
........ p
n+1_1
T I 1
r_

4. 5"—1 isdivisible by 4.
5. 772+ 230-3 301 g divisible by 25 for any natural number n > 1.

6. 7.5%1 +237%1 ig divisible by 17 for every natural number n > 1.
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7. 4" +15n+ 14 is divisible by 9 for every natural number n > 0.
8. 322 +7 s divisible by 8 for every natural number 7 >2.

9. 522 _24n 25 is divisible by 576 for all n.

1 1 1 n
+ ot

_+_ L —
10.95 723 nn+l)  n+l

nn+l) 2n+7)
6

1. 13+24+35+ ... +n(n+2)=

12, x%-y* = (x-y) ™'+ x2y+ .+ xy*?+y*):x,y € R
[Hint: Write x*! - y*'=x ( x® - y*) + y*(x-y) ]

13. 1+3+5+.. +(2n-1) = n?

14. 2">n; nis a natural number

15. (1,2,3 ..., n)* > 8 (13423433 + 1), for n>3.

1 1

1
+ +..+ >1 itive i
16. 1 Tl for every positive integer n.




(CHAPTER 6)

Complex Numbers and Quadratic Equations

The moving power of mathematical invention is not reasoning
but imagination.
- De Morgan
6.1  Introduction

In real numbers one of the properties was x* > 0 for every real x. This means x*= —1 has no
solution in real numbers. This is much the same way as x* = 2 had no solution when our
numbers were rational. But we did extend our scheme of numbers to include solution of the
equation x* =2. Now the question is “can we similarly extend our scheme of numbers so that
x*=-1 has a solution ? The interesting thing is that it has been possible to do so. The necessity
becomes clear when we try to solve a quadratic equation

ax?+bx +c=0

with b —4ac < 0. The problem s that in the usual formula for solution of a quadratic equation
we have a square root of 5* — 4ac. But in the field of real numbers negative numbers have no

square roots. So the obvious thing to do is to recognise +/—1 as a new kind of number and
augment our number system to include this new number which we call as animaginary number.

If we represent +/—1 by the symbol i and write i*=i.i= /-1 -+/~1 = —1. You should not
confuse v—1+/—1 with /g /b=+/ab , which is valid only for a, » > 0. Otherwise, putting
a=b= -1, you will get the fallacious result \/—_1 - J—_l = m = ﬁ = 1. Remember,
/1 only means 1, not = 1 or -1. Thus our new numbers shall consist of elements ofthe type

a+bN-1 = a +ib , where a, b are real numbers. A number of the fromz=a + ib will be
called a complex number.

6.2 Algebra of Complex Numbers
We define addition of two complex numbers a+ib and c+id by the rule :
(a+ib) + (c+id) = (a+c) +i (b+d).

We can easily verify that all the laws for addition in the case of real numbers such as (i)
closure law, (ii) associative law, (iii) existence of additive identity, (iv) existence of
additive inverse and (v) commutative law also hold for addition of complex numbers.
Here we take 0+i0 as the additive identity and -a + (-b)i as the additive inverse of a+ib
and write it as -(a+ib).

We define subtraction of two complex numbers a+ib and c+id by the rule :
(a+ib) - (c+id) = (a-c) +i (b-d)
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Now you can verify that associative law and commutative law do not hold for subtraction
oftwo complex numbers as in the case of real numbers.

Now we define multiplication of two complex numbers by the rule :
(a+ib)(c+id) = (ac-bd) + i(ad+bc)

Again we can verify the closure law, associative law and commutative law. Besides,
multiplication also obeys distributive law :

For three complex numbers z , z, and z,, we have
2 (zrz)=2 7,+t2 7,=(2,%2) 2,
If we agree to denote 0+i0 by the symbol 0 (the same symbol as used in R) then

0 (a+ib) = 0 which is same as 0+i0. Similarly if we agree to denote 1+0i as 1, then we would
get 1.(a+ib) = (at+ib) 1=a+ib. In otherwords, 1 is the multiplicative identity of the new set of
numbers.

We call this new set of numbers complex numbers and denote it by ¢ . Observe that
those elements of ¢ which are of the form a + 0i behave much the same as real numbers
including the property (a + io) (¢ + io) = ac + io which makes it self contained as far as
multiplication and even addition and subtraction are concerned. It is as if we could identify a +
0i with the real number a. In other words {a +io : @ €R } looks exactly like R. This is what
makes R apartof ¢ and ¢ an extension of R. Thus those numbers of the type a + ib shall be
called purelyreal if » = 0. What if we consider the numbers of the type a +ib witha=0 ? We
see that such numbers are self contained as far as addition and subtraction are concerned but
not so when it comes to mutiplication. Indeed (0 +ib) (0 +id) =— bd + i0 which is not of the
type 0 + B 7, rather of the type o+ 07, which we call purely real number and identify this with
the real number a . The numbers of the form 0 + ib are called purely imaginary numbers . A
complex number has a real part and an imaginary part : a + ib has real part @ whereas b is its
imaginary part. We usually write a complex number by a single letter. So ifz=a +ib, then

the real part of z is a and imaginary part, b.
We write this symbolically
Rez=a,Imz=D).

IfIm z = 0 the we call z purely real. Some times product of two complex numbers becomes
purely real even when they are not individually purely real number eg.

(2 +3i) (2 -3i)=13.

Complex Conjugates

If z is the complex number a + ib then we call the complex number a — ib its
complex conjugate and denoteitby z . Soifz=a+bi,Z = a— bi. We observe that

(i) §=Z (i)zzZ=a*+bh*=7Z

Thus product of a complex number with its complex conjugate is not only a real number
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6.3

but also a non negative number. So
(iii)z Z =0 if and only if z= 0.
Geometrical representation of a complex number

We represent a complex number z=a+ib by an ordered pair (a,b) which is identified as a
point (a,b) on the Cartesian plane (Refer Cartesian - coordinates in chapter-4, section 4.1). In
other words, we can say that a point (x,)) on the cartesian plane represents a complex number
xtiy.

Since every ordered pair (a,b) in the Cartesian product R x R or R?is uniquely represented
by a point on the Cartesian plane, the above representation of complex numbers by points is
also unique.

The establishes a one-to-one correspondence between this set of complex numbers ¢
and R%. We alrcady know that there is a one-to-one correspondence between the set of real
numbers and the x-axis. Therefore, the reason for which x-axis is called the real line, is carried
over to call the Cartesian plane as the complex plane.

IfRe z=0 then z = O+iy is identified as the point (0,y) which is on y-axis. Similarly if Imz =0
then z=x-+10 is identified as the point (x,0) which is on x-axis. Therefore y-axis is called imaginary
axis. As usual, x-axis is called real line or real axis.

The identification of a complex number on a plane was proposed by Jean-Robert Argand
(1768-1822). Hence the complex plane is also called Argand plane and the corresponding
diagrams for representation of a complex number are known as Argand diagrams.

We observe that if z =a +ib,z,=a,+ib,  Y-axis ) ROmrma a1 (0,59)
are represented by the points P(a,, » ) and Q(a,, b,) 4 g @ ¥ (a,+a;; byth,)
respectively and O is the origin then the point z + (a,b)

z, is represented by the point R(a +a,, b +b,). You %

can easily prove that OQRP is a parallelogram. Q(a,*+ib)

Later, when you come to vectors in Vol-II you will z, (@, b))

get to know that the sum resembles the parallelogram o) > X-axis
law of addition of vectors. In fact the vector OP is (Representation of addition)
said to denote the complex number z and similarly Y

o6 and OR denote z,and z, + z, respectively. A P(x + iy)

The vector Qp is the vector representation of the
complex number z —z,.

Now if z = x+iy is a point on the Argand 9 >X
plane then its reflection in the x-axis represents its
complex conjugate z=x—iy. We have seen before P' (x - iy)

7Z=7z7=x+)? 2492 . .
that zZ= Zz=x"+y"2> 0. Butx*+ " is the square (Representation of complex conjugate)
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of the distance of the point P(x, y) representing the
complex number x+ 7y from the origin. In other

words OP = \/Xz +y2 . \/Xz +y? is called the modulus of the complex number x+ iy. We

denote the modulus ofa complex number zby| z |. Thus | z |=| x+iy |= /x? + y2 . Itis easy

to derive that zz=zz=| z |*

Polar Representation of a complex Number

Let the point P have polar coordinates (1,0) (refer Section 4.1 of chapter-4).
P(z) or P(r,6) A Y

0|=Arg z
< A >
X' 0 X

(Polar representation of a complex number)

Since P has Catesian coordinates (x,y) we have

X=rcoso,y=rsino. s (a)
Clearly, r= \/x? +y* and tano = %,x 20 e ()
It isnow convenient to define z=x+iy=r (cos® +isind) ...............ccccceees (©)

Any value of 8 for which (a) or (b) or (c) holds is called an argument of z denoted by
0 =arg z. Whenz = 0 (=0+i0) arg z is not defined. Since sin¢ and cosine are periodic functions
of period 2, 7 has an infinite number of arguments any two of which differ by a multiple of 2x.
We assign a unique value to arg z by restricting 0 to the interval (—r, nt] i.e. —n <0< . Ifargz
is thus restricted, it is called the principal argument and is denoted by Arg z or Pr.arg z.
Hence

—n<Argz<m.

From equation (b), #=tan' (v/x) and while considering the principal values of tan'(v/x) e(—
n/2, w/2). Arg z is determined as follows :

tan B if x>0
X
n:-i-tan'% if x<0,y>0
Argz (=Prargz) = —n+tan*1§ if x<0,y<0

g if x=0,y>0
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if x=0,y<0

SN

m Yy m
where — — < tan'— < —.
2 X 2

[N.B.: You will be formally introduced to functions like tan’ % in Vol-II when inverse

trigonometric functions will be discussed. For the time being, you may take tan™ % as 0 such

that tan0 = Z]
X

-1 1 T 5
For example, Arg (—./3 — i) =-n + tan’! (_\/5) =-m+tan’ (ﬁj = -m+ e —f ; Similarly

T

Arg -5+ D= AR (5D

.
—1+\/§i —1—\/§i 2n 27
Exercise : Find Arg | = | and Arg S| |As T
33
An interesting property of complex numbers of the type cos o + i sina .
(cosa+isina) (cos B+ isinP)=cos (a+p)+isin(a+p) (1)
(coso+isina)(cosP—isinP)=cos(a—p)+isin(a—p) (2)

Now if z and z, are two complex numbers expressed as in (¢) by
z, =r cosftising andz =r, cose,+ising
thenz z, =r r, [cos(6+6,) +isin(6,+6)] [Using identity (1) above]
z1 .0 . . .. .
and g = g [cos (6,—6,) +isin(6,— 6,)] provided z, # 0 [Using identity (2) above]
Observing that |cosa +7 cosa | =1, we get
O 1zz,|=rr, =[z]]z,|

il |Zl|

n |72

7]
Z)

(if)
(iarg z z, = 6, + 6,= arg z +argz,

) Z _
(iv) arg | 7, =0,—0,=argz —argz,

Note that (iii) and (iv) are not true in general if we consider the principal value of arguments.
If z is anonzero complex number, we can wirte z=r(cosb+i sind)= r{ cos(6+2nm)+i sin(6+2nm) }
where 6 is the principal value of arg zand » is an integer.
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So arg z=0 + 2nrn. This gives a set of values for arguments of z where any pair of these
values differ by a multiple of 2=. Inview of this (iii) and (iv) are interpreted as set equations.

Note thatif z= 0, arg z+arg z =2n=n, where » is an integer or zero.

6.4 Inequality involving complex numbers
The triangle inequality : For two complex numbers z and z,
|z, +z|<|z|+z)]
equality holds if and only if arg z differs from arg z, by a multiple of 2.
(It may be emphasized once again that complex number system is not ordered, i.e. there is no

inequality among complex numbers. However the triangle inequality is an inequality involving
modulus of complex numbers.)

Proof': Let z =r (cos 6+ ising ) and z, =r,(cos 6,+ i sind,) where
| le =r,argz =0, | zz| =r,,argz, =0,
Hence |z, +z, | =|( 7, cos 6+ r,cos 6) +i(r, sind, +r,sing)
=r>+r’+2rrcos(6—6,) [« [x+iy]* =x"+)7]
But cos @ <1 for every real 0. So we have
|z, +z)P<r?+r2+2r r,=(r, +1)"=(|z,| +|z,])* which proves the result.
Now equality holds ifand only if 8- 6, is a multiple of 2z. Geometrically this means that
in the parallelogram OPRQ, OR < OP+PR.
Example 1 :
() (3+7i).(5-2i)=3.5-7.2+7.5i—3.2i=15+ 14 +i(35-6) = 29 + i29
(i) The multiplicative inverse of 3 + 5i is given by
1 3-5i 3-5i 3 5.
G+50" =305 " (3+5)(3-5) 32452 34 34

Example 2 :
2+3i
Express - inthe x +iy form
5-2i
Solution :

2+43i  (2+3i)(5+2i) 10-6+i(15+4) 4+19i 4 .19

5-2i (5-2i)(5+2i) 52422 29 20 29

Example 3 :

Ifz, and z, are two complex numbers then show that

(a) Z1+2Zy =Z+g
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(b) 217y T Z1 « Iy
AN
() (Z]= z ifz,#0.
Solution :
(a) Letz =a+ib,z,=c +id. Thenz +z =(a+c)+i(b+d)

=71+2, =(atc)—i(b+d).
71t 2, =(a-ib)+(c—idy=(a+c)—i(b+d)=7;+7,
(b) Left to the reader.

21 _ a+ib _ a+ib ¢ —id _ ac +bd . bc — ad

© z ¢ +id ¢ +id ¢ —id +d? 2 +d?

73

c —id c —id c¢ +id 02+d2 02+d2

2l _ a-ib _ a—ib ¢ +id _ ac +bd _.bc — ad Z(ZIJ
Example 4 :

Solve the equation : x* =1

and obtain properties of the cube roots of unity.
Solution :

Since x* —1 = (x—1)(x*+ x + 1), it follows that the cube roots of one are givenbyx=1,

x*+x+ 1 =0. But the solutions of the quadratic equation x*+x + 1 =0 are given by

_1+AB 143
B 7 P

o

where we may notice the following important facts :

(i) «=B,p=a.
In other words, the two complex roots of the equation are conjugate of each other.
(i) o' =p, p'=a
that is, the square of any one complex root is the other complex root.

(i) Ifwe denote ® to be one complex root, then the other complex root is @’ and therefore
the three roots are 1, o, .

(iv) Since wis aroot of the equation x*=1, we obtain@’=1
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(140
and as consequence of this we obtain : ‘= 0, ®’'= @, 0°= (0’)* =1 @*"= 1,
0= 0, o"?=w’, n eN.
(v) Since o is a root of the equation x*+ x + 1 = 0, we obtain 1+ 0 + > =0,
that is, the sum of the three cube roots of unity vanishes.
Example 5 :

Find the cube roots of a where a is a non-zero real number.

Solution :

Suppose thet x> = a and suppose that @ > 0. Then as a® is a positive real number, we can

rewrite the above equation as

. X _
whose solutions are — = 1, o, o’

U [—

a

1 1
,a® o, a® o are the three roots ofthe given equation.

1
so that x = a3
In the case a <0, we write the given equation as (—x)* = (—a) or as

{ _x l ]3 i 1
(-ay

—-X ,

where solutions are given by =1, o’

(—a)

1

that is, x = — (~a)* . ~0(-a)* , ~0* (~a): -

Remark
By using De Moivre's theorem (given later) the cube roots of unity can also be obtained.

EXERCISES 6 (a)

Multiply (2/=3 +3v-2) by (4v=3-5-2)
2. Multiply (3v=7 =5vV=2) by (3v-2 +5v-2)

3. Multiply (i +7) by (a — bi)

1.
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1.

12.
13.

14.

15.

16.

17.
19.
20.
21.
22.
23.

24.

1++-3 1-+-3
Multiply (X— +§/_ J and (X—T‘/—J

Express with rational denominator.

1 6 3V-2+2 (-5
3 -2 32 =242
3+2i , 3-2i 8 a+xi+a—xi
2-5 2+5i Y oa-—-xi a+xi
2 N3 a3
CaT) (=) 1o, =@
x —i (x+1) (a+i)” —(a—i)

Find the value of (—)*"**; when # is a positive integer.

Find the square of 9+ 40i +y9-40; .
Express in the forma +ib :

~ 3+5 .. \/g—l'\/z (]+')2
(1) 2_311- (11) Zﬁ—i\/g (lll) 3_:.
- (a+ib)’  (a—ib)’ 1+i
() a—ib a+ib W) 1-i

Express the following points geometrically in the Argand plane
(i) 1, (ii) 3i (iii) — 2
(iv) 3 +2i (V)3 +i (vi) 1 —1i

Show that the following numbers are equidistant from the origin :

2t l+ifa, i3

Express each of the above complex numbers in the », 6 form

If 1, o, o* are the three cube roots of unity, prove that

(1+o)'=o 8. (l-ot+td)(1+o—a0?)=4
l-o)(1-cd)(1-0H)(1-0)=9

2+50+200)= 2+ 20+ 50)° =729

(1-o+o) (1l -+ o) (l-o"+we’).. to2n factors =27,

Prove that x* + y* + 22 = 3xyz=(x + y + 2) (x + oy + ©’2) (x + yo’ + zw)
Ifx=a+b,y=ao + be?, z=aw* + bw, show that

(Dxyz=a'+ b’ (2) x* +y* + z2 = 6ab B +y+2=3(a’+ b
Ifax+by+cz=X, cx+by+az=Y, bx +ay + cz=Z show that

(@*+b*+cr—ab—bc—ca) (X +y*+22—xy—yz—zx) = X*+Y? + Z* -YZ - ZX - XY.
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6.5 De- Moivre's Theorem (for integral index)
Statement :
(cos 0 +isin 0 )*=cos n0+isinn 0, for any integer n.

Proof : Case I (When » is a positive integer)

We prove this by induction : The above statement is true for » =1 and suppose that it is true for

any fixed positive integer £, that is, let.

(cos 0 + i sin 0 )< = cos kO + i sin k0O,

So (cosO + i sind )& *!
= (cos 0 + i sin 0)* (cos 0 + 7 sin 0)
=(cos kO +isink0) (cos 6 +isin0)
=cos(k+1)0+isin(k+1)0

by using indentity (1) given in section 6.3.

Now the result follows by the principle of Mathematical induction.

Case I1. (When » 1s a negative integer)

Let n =—m where m is a positive integer. To prove our contention we need only to observe that

1
cos O +isinB

which follows from (2). So we have
(cosO+isinB)*=(cosO+isinO)™

=cos0—isin0,

1
_ _ 1 .
= (cos 0 + isin0)™ ~ cosm0 + ismmo 0Ycasel

= cos mO — i sin mO = cos n + i sin nO

as sin (— o) =— sin a.

De-Moivre's Theorem (for rational index)
Let p and q be two integers with q > 0. Now

q
(cosge + isingej = (cos pB + i sin pB) = (cos 6 + i sinb)®

P
This gives cos 5 0+isin g 0 as one of the values of (cos 6 +isin ) a

Why we say that this is one of the values is simply because

q
(cos(p—e + 2—“) + isin(p—6 + Z—HD
q q q q

=(cos (p6 + 2m) + i sin (p6 + 271) = cos pO + i sin pH = (cosO + i sinO)P.
This gives another solution to (3). In fact (3) has exactly g solutions namely

3)
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6.6
()

(ii)

PO 2mk) .. (P ZRkJ
£ 220 Ll = _
cos(q g ]Jrzsm(q . fork=0,1,2,.... qg-1.

The reader can easily see that for & > g there will be repetition of earlier values.
Application

General solution of the equation

x"=1

where » is a positive integer. 4)
Since 1 = cos 2nk + i sin 21k

by what we have done above one sees that all the solution of (4) are

x=cos% +isin%,k=0,1,2, .....

So for n =3 we have the solutions

X = CoS % + i sin %,kz(), 1, 2 where £ = 0 corresponds to 1 and k=1, 2

correspond to the imaginary cube roots of unity. (see example 4)
General solution of the equation

Xr=aq (5
where a is a complex number, is given as follows :

Ifa =7 (cosa + i sina) then it is easily seen by the above arguments that the n solutions to (5)
are

1
ern(cos(g N &) ; ism(& + &D,I\FO, 1,2, .....n—1.
n n n n

Finding square roots of a complex number p +igq p, q €R.

Letz =p+ig=r(cosa+isina)where r= ,/p2+q2 ,Fcoso. =p,rsina=q.
By what we have done about solution of (5) the two square roots of zshall be

1 1

I"i(COS—g' + isin—%), rz(cos (% +n)+ i sin (—(21 + ?T))
o o 1—cos a s A
— 4+ = _ = = vro P = =

But cos (2 TE) cos> . 1/ > sin 5.

So we have the two roots :

1 1
2| [14+cos a +.\/I—COSOL _ \/l-lrcos o +.\/l—cos o
r (\/ > i > =T > i 7
. r+ rcoso . [F—rcoso r+ rcoso - [r—rcoso
+ +
which are (J 2 l\/ 2 j , — (J 2 l\/ 2 )
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On substitution for p = cos o we get them to be

r+p | .|r—=p r+p  .|r—=p
5 S - (507
However if we are required to find the square root of a complex number we can also do so
without involving De-Moivre's theorem. This is explained by the following example.

Example 6 :

Obtain the square roots of 3 + 44,

Solution :

(iii)

Letx, y e R such that (x +iy) = \/3+4; . Then
-y +i2xy=3+4i
Equating the real and imaginary parts
X*—y*=3 (6)
2xy = 4. (7
Now (x* +1%)>= (¥ —1* )2+ 4x* = 32+ 42 =25,
But since x* + * is non - negative, we have x* +y* = 5.
Hence x* +* = 5.

Solving equations (6) and (8) we obtain (8)

x2 =4 je.x = 12

y2 =1 iey= =1

From these possible values, we have to choose correct values. It follows from equation
(7) that the product xy is a positive number. So both x and y must have the same sign. Thus if
x=2,theny=1andifx=-2, theny=—1.

Hence the square roots of 3+ 47are2 +7and -2 —i.

Other uses of complex numbers in Geometry
One easily sees that if z , z, are two complex numbers represented by the points P and Q then
nzj + mzy

- is a complex number represented by the point on the line segment PQ which divides

it in the ratio m . n.

This fact can be used to show that medians of a triangle are concurrent; so also the
bisectors of the angles of triangle.

Again, when we discuss circles (chapter-12 ) and their equations you will get to know that for
any complex number o and 7> 0,

{z:|z —a|=r}
is a circle of radius » and centre at the point o . (By point o, we mean the point which the
complex number o represents)



Complex Numbers and Quadratic Equations 145 |

(iv)

6.7

3]

Tz =b

:k}

tooisacircleif k= 1; otherwise, it is a straight line. (That it is a line for k=1 will be evident after
knowing general equation ofa straight line in chapter-11)

Also {'z_a

A usefulresult : Ifz , z , z_ are three complex numbers represented by the vertices A, B, C,

respectively of a triangle described in anticlockwise sense, then

—b-A/b*-4ac C(Z3)

(cos o+ i sin o)
2a

where o= m~CAB.

Proof: Let Pand Q represent the numbers z,
z, and z, -z respectively. Considering the

fact that a complex number z can be represented Y
by the vector joining the origin to the point z, it is 4

casily seen that AOPQ and AABC are congruent.

% % . -
(OP=|oP|= |z,—z|=|AB | =AB. similarly for

other sides) o P(z,~z)

AC_ 0Q - O > X
Hence AB- ODP and mzZQOP =mzZCAB

Llmmal o 0Q _ Ac

lz2 —z1| OP  AB
3 -4 _ _
and arg p— =ms/CAB = a (say)
z;—z;, _ AC o
= R AB (cos a+isina)

It follows that the lines joining the points z, and z, and that joining z_and z, are perpendicular

iffarg [(z - z)/(z;-z)| = £75 ie.iff(z,~2,)/(z,~ z,) is purely imaginary.
Solution of Quadratic Equations

We mentioned earlier that our need for complex numbers arose while searching for a
solution of as simple an equation as simple an equation as x*+1=0. Now we know that this
equation has two solutionsx =17, -i .

Let us consider a quadratic polynomial p(x) = ax’+bx+c ;a,b,c € R, a#0. Iffor o €R,
p(o)=0 we say that a. is a root of p(x) which is same as saying o is a root of the equation
p(x)=0.
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d o,= ————are the real roots of the

We know that o, = .

—b++b* —dac ' —b—/b*—4dac
2a an 2a
quation p(x) =0 if h*-4ac >0.
But If b>-4ac <0, weneed to search for roots in ¢ . But does p(x) =0 have aroot at all

in ¢ ? The answer is provided by the fndamental theorem of algebra which we state without
proof’:

‘Every polynomial equation of degree > 1 has at least one rootin ¢ °.
More specifically we have :

‘Every polynomical equation of degree n has n roots in ¢ ’. So now the equation ax*+bx+c=0,
a,b,c € ¢, a=#0hastworoots

o = —b+b*—4ac o= —b—b*—4dac

! 2a T2 2a
However, in solution of quadratic equations, we shall take a, b, ¢ as real numbers.
Example : 7
Find all the roots of 4x?+8x+13=0.
Solution

The two roots are given by

3 3 —8—/87—

i q.=
272 2x4

Simplifying the discriminant /g2 _4«4x13 = +/-144 = 12i
3, 3. L .
Hence the roots are —1 + 5! and —1 — 37 , after simplification.

N.B. Observe that in a quadratic equation ax?+ bx+c = 0 with real coefficients a,b,c,
complex roots occur in conjugate pairs.

For example if a quadratic equation ax*>+ bx+c = 0 has 3+4i as a root then the other
root must be 3-47 .

Example- 8
One of the roots of x*-x*+x-1=0is i. So that this equation has a exactly one real root.
Solution :

Since 7 or 0+ is a complex root the other complex root must be its conjugate pair 0-i. By
the fundamental theorem of algebra, this equation, being of degree = 3 must have exactly 3
roots. Two ofthe roots are 0+i and 0-i. So the other root must be real, because ifit is complex,
its conjugate pair must also be a root. Therefore, the third root has to be real number.
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8.

Solution : Note that 72° =

EXERCISES 6 (b)

Ifz and z, are two complex number then show that
|1 _215 |2 - | Zl_Zz|2 = ( 1 _|Zl|2) (1 _|Zzlz)'

If a, b, c are complex numbers satisfyinga+ b +c =0 and @ + b* + ¢ =0 then show tha ||
=1b]=|c].
What do the following represent ?
(1) {z:|z—a|+|z+a|=2c} where|a|<c
(i) {z:|z—a|-|z+a|=c}
(iii) What happens in (i) if|a|>c¢ ?
GivencosatcosB+cosy=sina+sinp+siny=0,
show that cos 3+ cos 33 + cos 3y= 3 cos (ot pB+y).
Binomial Theorem for complex Numbers
Show that (a + by"= a"+*C, a"' b+ ...... +°C a"" b+ ...+ b wherea,be Candn a
positive integer (use induction on #, rule of multiplication of complex numbers and the relation
ucr+ nCr—l = n+1cr).
Use Binomial theorem and De Moiver's theorem to show
cos 30 =4 cos*0— 3 cos0, sin 30 = 3 sin0 — 4 sin’0.
Express cos n 6 as sum of product of powers of sin 0 and cos 6. Do the same thing for sin 76.
Find square roots of

i) -5+12 V=1 (i) — 11 — 60 —1

(iii) —47 + 8 Y1 (iv) —8 ++/-1

(V) >~ 1+2a-1 (vi) 4ab -2 (a* - b?) J-1.
Find the values of cos 72°, ......

5 T radians. Let o= cos% +i sz_n Thus a is one of the roots of the

equation x° = 1 whose roots are,

2kn
5

But x°* —1= (x— D(x*+ x*+ x*+ x + 1). So ¥~ 1 = 0 has x = 1 as one of the roots which
corresponds to k= 0. So all other roots must be roots of the equation x* + x*+ x*+ x + 1=0.
Let us try to solve the above equation. Since x = 0 we might divide both sides by x* to get

coS +1sm—k 0,1,2,3, 4.

1 1
C+x+1+ 571t 3 =0
X

1
orx’+ 5 +x+ 1i1=0 (1)
X X
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1
Now ifx+ 1 =2y, then 4y?=x? + T +2
So we can rewrite equation (1) as
42 +2y—1=0 (2)
which is a quadratic equation admitting solutions :
_ 2 420 _ -1 %45
Y g T
But what is y ?If we write
_ 2kn .. 2kn
xk—COS T +17smn T
we get all complex roots as x,,x,,x,,x,.
Butx, =x, and= x,= x, .Soy canbe cither Re x, or Rex,.
It is easily seenthat Re a=Rex, >0 and Rex,<0. In other words we have
cos 72° = _1%4\/5 and cos 216° = _1%‘/5
9.  Find the value of cos 36°
2 : 17 _ 1=
10. Evaluate cos 17 using the eqation x'/ —1=0,
11.  Solve the equations
1)z =1, () 22=i, (i) z°=—i, (iv)Z’=1+i.
12. Ifsin a+sin B+ siny=cos a+ cos p + cos y= 0, show that
(i) sin3a+sin3p+sin3y=3 sin (a+P+7y)
(i) sin* o +sin® f+sin*y = cos? o+ cos? B+ cosly = %
1 1
13. Ifx+ e 2 cos 0, show that x" + o 2 cos n0.
14, Ifx =cosa +isma,r= 1,23, andx +x +x= 0, show that x| xy %3 =0.
1 +sinB + icos® \' _ (M—e) _.(M_ej
15. Showthat(H_ Sin O — 7cis 0 ) =cos |5 ~AY)+isin |75 ~HY )
16. Ifaand B are roots of x*—2x+4 =0, then show that
ar+ B =2 cos -
17. For apositive integer n» show that

@ A+ d-ir=,"" cos B



i) 1<z—2i[<3

(i) arg (Zil.) =L [Hint Arg (x +iy)= 75 =x=0,y>0]

2
®
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1 : il ; n—= n @
(m (d+if3)r+ d-iJ3)"= 2""cos 3
1
18. Letx+ % =2cosa,y+ v =2cosP,z+ % =2 cos y . Show that
. 1
(1) 2cos(a+P+y)=xyz+ oz
. 1
(i) 2 cos (pa+gf+ ry) =xPyi + WEL
xtyiz
19. Solve x* +x'—x*=1.
20. Find the general value of Oif
(cos O+isinO) (cos20+17sin20)..... (cosnO+isinnB)=1.
21. Ifz=x+iy show that |x| +[y| < 2 [|z|.
22. Show that
Re (z,z)) =Rez Rez,—Imz Imz,
Im (z,z)) =Rez Rez, +Imz Imz
23. What is the value of arg o+ arg o*?
24. If|z| <1, |z,| < 1, show that
|1 - 215 |2_|Zl_ 22 |2 = (1 - |Z1|2) (1 - |22[2)
Hence or otherwise show that
1 -2 .
-2 <1 1f|zl|< 1, |22|< 1.
25. fz?+z?+z? —zz,—zz,—zz =0, show that
lz,—z,|=|z,~z,| = |lz,—z,].
26. Iflja| < |c| show that there are complex numbers z satisfying |z— a| + |z +a| =2]c|.
27. Solye LZX¥3 , B2y +1_ _;operex y, € R.
2+i 2—i
28. If (1 +x+x*) =p,tp, x+ p,x*+..+p, x* thenprove that p,+ p, + p, +...=3""L
29. Find the region on the Argand plane on which z satisfies



(CHAPTER 7)

Linear Inequalities

7.0

In most sciences one generation tears down what another has built and what
one has established another undoes. In mathematics alone each generation builds

a new story fo the old structure.
- Hankel

Introduction :

You apply algebra to solve apparently difficult problems of arithmatic. The unknown value
or values to be determined are taken as x or x, y both and a single or a pair of equations are
framed using the given conditions and the solution of the problem reduces to solving some
equations.

But in some cases we do not get equations out of the given conditions, rather we get
inequations or inequalities.

Take an example :

Example -1

A person’s BMI (Body Mass Index) is calculated as hlz ; where w is weight in kilograms
and h is height in meter.
BMI has the following implications related to health :
(i) BMI <20 (Some also keep this figure at 18.5) = under weight
(i) 20 <BMI <25 = Normal
(iify 25 < BMI <30 = Over weight
(iv) BMI > 30 Obese (fat).

Let us now determine the range of weight of a person of height 1.6 meter so that his BMI is
within the normal range, i.¢. he is neither underweight nor overweight or fat.

To answer the question, we have to determine the range for the weight of the person so that
his BMI is normal, which means

w
20 < h_2<25

Note that here we do not get any equations in the unknown ‘w’.
Putting h=1.6 we get
20 % 1.6 <w <25 x 1.6

or 51.2<w<64
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Thus we may say that the body mass index of the person will be in the normal range if he
maintains his weight within 51.2 kg to 64 kg, which means that his weight should not be less than
51.2 kg and more than 64 kg.

Mark that the BMI under the conditions, normal and over weight has been expressed in
terms of combination of inequalities or inequations of first degree in the variable w (the index of
w hereis 1).

Study ofreal life problems in several diverse areas as economics, finance, Optimization
problems involves inequalities. Inequalities are also extremely useful in expressing and building
up concepts of pure mathematics and theoretical sciences.

Definition:
Inequalities involving variable or variables in first degree are called linear inequalities.
Example - 2
(i)2x+3>0
(i) -3x+5<7
(It is a combination of an inequality -3x +5 <7 and an equality -3x +5=7)
(i) x=>1
(iv) y<-2
(V) 3x+4y<7
(vi)x+2<2x+3<x+5
(vii)ax + by <c
(viii) ax + by >c¢
These are all examples of linear inequalities in one or two variables.
Inequalities of the type ax?+bx+c >0 or ax’+bx+c <c (a #0) are examples of quadratic
inequalities.
In this chapter we shall deal with linear inequalities with one or two variables or unknowns.

It may be noted that an inequality with ‘<’ sign (less than or equal) or © >’ sign (greater than
or equal) is called a slack inequality. An inequality with ‘<’ or > sign is called strict inequality.
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7.1 Soultion of a linear inequality

Definition :

The set of values of the variables which satisfy the inequality is called solution of

the inequality. (Usually a solution of an inequality is expressed in the form of a smpler inequality

or a set of numbers.)

The following facts which are derivable from the properties of the real number system

are helpful in solution of inequalities.

(1) Addition or subtraction of the same number does not affect an nequality in the sense that

the greater or smaller side remain as before.

Example :x <y<ox +tr<y+pforanyr eR

(i1) Multiplication or division by a possitive number does not affect an inequality.

a<bosb-a>0<sa(b-a)>0,0>0

sSob-oaa>0sab>aa

or aa < ab.

1
Similarly the case of division can be explained; as o.> 0 implies = >0 (by properties of R)

(iii) Multiplication or division by a negative number reverses an inequality.

(iv)

v)

a<beb-a>0<soa(b-a)<0,fora<o

(because product of a negative and a positive number is negative; by properties of R)
soab-oa<0<sab<oa

or aa > ab

(The inequality is reversed)

1
Similarly the case of division can be explained; as o < 0 implies P <0

(reciprocal of a negative number is also negative).
Taking reciprocals, whenever they exist, reverses an inequality, ¢.g.

fos L]
=375

Multiplication by 0, coverts an inequality into equality as both sides become 0.

Now let us come to solving inequalities.

N.B.: (i) Whenever we say that a number is positive or negative, it is necessarily a real
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number. A complex number cannot be positive or negative.

(i1) If a, b € R exactly one of the following is true; a =b, a<b or a>b. But for
complex numbers we have only a=b or a # b; there is no inequality.

Example-3
Solve 20x <500 in
(i) positive integers
(i) integers
(iii) real numbers
along with representation on the number line.
Solution:
(1) Inpositive integers, solution - set is given by
S = {n| In<25} which includes 24 solutions
n=1,23,..24
(i) Inintegers, solutionsetS={k |k € Z & k <25}
orS=1{...,-3,-2,-1,0,1,2, ..., 24} whichis an infinite sct of solutions:
(iii) In real numbers, solutionset S= {x | x € R, x <25}
or (-0, 25) which is an infinite set.

Representation on the number line

1
X < T 1

T T T T T T 1 —> X

I 1
-3-2-10 12 3 24

() Solution in positive integers are shown by points marked
1,2,3,..,24
(i) Integral solutions are represented by points marked

0 =3,-2,-1,0,1,2,....24
(i) Solution in R is represented by all the points on the ray A_)){

Example-4
Solve

(I) x+2 < 2x +3 < x+5



Elements of Maihematics, Vol- 1

[154
Sx+17 1
. >y
(i) —5—=2%-3
Represent the solution-sets on the number line
Solution:

(i) x+2<2x+3<x+5
or 2 <x+ 3 <5 (Subtracting x)

or -1 <x <2 (Subtracting 3)

s.Solution-set S={x e R|-1<x <2}

or (-1, 2]

(i) Multiplying by 8,
Sx+17<8x-4 or 21<3x orx>7

or S={xeR|x27}orS=[7, »)
Any one ofthese gives the solution.

Representation on the number line :

X < .
The values of x, in case of (i) are all the real numbers in between -1 and 2 including 2, i.¢. the

semiclosed or semi open interval (-1, 2] (open at -1 and closed at 2).
Similarly, in case of (ii) , the solution set is the ray KX , 1.¢. all the real numbers on it; where

A represents the number 7.
Example-5§
A person purchased four items A, B, C and D for rupees 1000, 950, 800 and 750 and sold
the first three items at rupees 1200, 1140 and 944, Find out, what should be the minimum selling
price of the fourth item. if the person wants at least 18% profit on his total investment.

Solution:
Total purchase price in rupees

= 1000+950+800+750=3500
Minimum selling price in rupees at a profit of at least 18%

18
3500( IOO] 4130
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Taking x to be the least selling price of item D,

1200+1140+944+x > 4130

= x+3284 > 4130

= x 2 846

.. Minimum selling price ofitem D is 846 rupees.
Example-6

Find all pairs of natural numbers differing by 3, both of which are greater than 2, such that
their sum is less than 28.

Solution:

The solution-set is {(x,x+3)|x eN,x>2.2x+3 <28}

Now,

25
2x+3 <28 =>x < T:X <12 (-rxeN)

2 <x<12=3<x<12, so the required pairs are (3,6), (6,9), (9,12) and (12,15).

Example-7
Solve | x-a | <& (pronounced as delta) ; x, a € R.

Solution:

Recall the definition of modulus function in Chapter - 3.

By definition,

(i) forxza, |x-a|=x-a

SLx-al<de x-a<de x<a+d

Combining with x>a, wegeta<x<a +o.. .. (1)

(i) forx<a,|x-a|=-(x-a)=a-x

SLx-al <0 a-x<dea-0<x

Combining with x <a, wegeta-0<x<a.. .. (2)

Taking into account the solution sets in (1) and (2), we get

a-d<x <a+ 0, which includes values of x satisfying bothx 2 a and x < a.

Thus, |x-a|<d&a-0<x<a+d

This is an extremely important result which has applications in subsequent chapters and further.
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Exercises - 7 (a)

1. Determine whether the solution-set is finite or infinite or empty :
(1) x<1000,x e N
(i1) x < 1, x € Z (sct of integers)
(i) x < 2, xis a positive integer
(iv) x < 1, x is a positive integer

2. Solve as directed :
(1) 5x < 20 in positive integers, in integers.
(i) 2x + 3> 15 in integers, in natural numbers.
Do you mark any difference in the solution-sets ?
(1ii) Sx + 7 <32 inintegers, In nonnegative integers.
(iv) -3x - 8 > 19, in integers, in real numbers.
(v)|x-3|<11,inNandinR.

3. Solve as directed :

. . Lox 7 :
(i) 2x+3>x-7inR (u)5+§<3x—11nl{

X X X

11
(iii) 373 + 3 < 3 for nonnegative real numbers.

(iv) 2(3x-1) <7x+1<3 (2x+1) for real values.
(V) 7(x-3) <4 (x + 6) , for nonnegative integral values.
(vi) Convert to linear inequality and solve for natural numbers :

x-2)(x-3)<(x+3)(x-1).

X
(Vii)SolvejnR,E+1S2x—5<x,

Also find its solution in N.

(viii) Solve inR and also in Z :
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3x+1 x+2 5-3x
>

5 3 5

4. Solve|x-1|>1 and represent the solution on the number line.
[ Exhaustive hints : By definition of modulus function
Forx-120o0rx21,|x-1l|>lex-1>leox>2oxe (2,
Forx-1<Qorx<l,|x-1|>l&e-(x-1)>1
< x - 1 <-1 (multiplication by - 1 reverses the inequality )
Sx<0ox e (- 0)
.. Solution set is the union, (- o, 0) U (2, ®).
Show this as two disjoint open intervals on the number line, i.€., real line. |

5. Solve in R and represent the solution on the number line.

@D [x-5[<1 i) =< +

x—1 x+1 3x-1
< <
2 3 6

(i) 2x +1 >0 (iv)
6. Inatriangle ABC; AB, BC and CA are x , 3x +2 and x +4 units respectively where x € N. Find

the lengths of'its sides.

(Hint : Apply triangle - inequality)

7. The length of one side of a paralleogram is 1 c.m. shorter than that ofits adjacent side. Ifits

perimeter is at least 26 ¢.m., find the minimum possible lengths ofits sides.

8. The length of the largest side of a quadrilateral is three times that ofits smallest side. Out of the
other two sides, length of one is tweice that of the smallest and the other is 1 c.m. longer than the
smallest. Ifthe perimeter of the quadrilateral is at most 36 ¢.m., then find the maximum possible
lengths of'its sides.

9. Find all pairs of consecutive odd numbers each greater than 20, such that their sum is less than
60.

10. Find all pairs of even numbers each less than 35, such that their sum is at least 50.
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7.2

Graphical solution of linear inequalities in two variables

As you know, linear inequalities in two variables are presented in the formax + by + ¢ <0
or ax + by + ¢ >0, which may also be strict.

Consider, 2x + 3y <5
According to definition, the solutions are those values ofx and y which satisfy 2x + 3y <5.

Taking a particular value of x, i.e. x=1, we get 3y <3 or y < 1. Thus the real values of y
corresponding to x = 1, belong to the set {y | v € R, y <1} = (-o0,1).

If we consider all possible real values of x, then we have no other way than describing the
solution-set as S={(x,y) | 2x+3y <5}, which s just a restatement of the inequality.

Ofcourse, we can pick up as many solutions as we like by taking particular values ofx or y,
as we have already done, taking x=1.

Thus, we are convinced that 2x+3y <5 has infinitely many solutions forx, y € R.

Now the question arises : how to graph these solutions or, for that matter, how to visualise
these solutions on the Cartesian plane, i.¢. the planc of x and y - axes ?

From highschool geometry you know that 2x+3y-5=0 or, in general, ax + by + ¢ =0
represents a line on the plane. In other words the coordinates (x,y) ofall the points on that line
satisfy ax + by + ¢ = 0 and conversely any point P(x,y) whose coordinates x and y satisfy
ax-+by+c=0 lies on this line.

What about the points whose coordinates do not satisfy ax+by+c= 0 ? Obviously those
points lic off the line, i.e. not onthe line ax + »y + ¢ = 0. So for all such points P(x,y), we have
eitherax + by + ¢ > 0orax + by + ¢ <0.

Thus, the values of x and y satisfying 2x+3y < 5 or 2x+3y -5 <0, are the coordinates of
points P(x,y) lying outside the line 2x + 3y - 5=0.

We shall now make use of a very fascinating property of a line on a plane which will be
proved in chapter-11 (Section 11.4) while discussing ‘position of a point with respect to a line’,
which states :

Two points P(x,,y,) and Q(x,, y,) lic on the same or opposite sides of a line ax+by+c=0
according as ax,+by +c and ax +by,+c have same or opposite signs.

This solves our problem !

Putting x =0, y=0in 2x+3y-5 we get 2x + 3y - 5 =-5 < 0. Therefore all the points (x, y)
for which 2x + 3y - 5 <0 (or 2x + 3y <5) lic on the same side of the line where the origin lies.
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This side of the line 2x + 3y - 5=0 is called the Solution-Region (SR) of 2x+3y <35.

This fact is diagramatically, represented below:

AY

2x+3y-5>0
or
2x+3y>5

-

(Solution-Region of 2x + 3y <9§)

N.B.

(1) Ifyouremember the ‘plane-separation postulate’ discussed in chapter-4 (Act 4.01) you can
easily notice that the solution-region is a half plane, with the line 2x + 3y - 5=0 as its edge.

(2) Since the incquality is strict, 1.¢. 2x + 3y < 5, the points on the line do not comprise the

solution.
(3) The graph ofthe solution of 2x + 3y < 5 is the solution-region which has been shaded.

Corollary : The graph of the solution of 2x + 3y > 5 is the other halfplane of 2x + 3y - 5=0
which does not contain the origin. This region has not been shaded.

(4) In case of a slack-inequality like ax+by+c < 0 or ax+by+c 2 0 the solution-region includes

the line ax+by+c=0.
Example-8
Solve graphically 3x+4y > 12.
Solution:
Puttingx=0,y=0
We sce that 3x +4y - 12 <0, i.e. 3x+ty <12
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X' <€

A 4

. Solution region of 3x + 4y > 12 is the other side of the line not containing the origin.
Since the inequality is slack, the paints satisfying 3x + 4y = 12, i.e. the line itselfis included in the
solution region which is shaded.

Example-9
Solve graphically 3x <4y
Solution: Ah

The line 3x - 4y= 0 is drawn. 7

Y

(Just by taking two points whose coordinate ”

satisfy the equation ofa line, you can )’

draw its graph, as you do in high school)

N
\
v

»
~0

Now, we have to locate a point whose »

y

/
coordinate satisfy 3x - 4y < 0. £

(4,4) is such a point. (Notice that 3 x 4 -4 x4 <0) J
So all point satisfying 3x - 4y <0 or 3x <4y lie on the half-plane of 3x - 4y = 0 containing (4.4).

Solution region has been shaded.

Exercises - 7(b)

Solve graphically :
I. x<y 4. x+2y-5<0
2. 3xt+4y > 12 5. Tx -4y < 14

3. x-y>=0 6. x+8+10>0
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7. Sx+6y<I12 10, x+y=21
8 3x+y>0 11. x<0
9. 3x +8>24 2. y>5

7.3 Graphical solution of system of linear inequalities in two variables

This is explained throught the following examples : Y
Example-10
Solve the following system graphically : $ o
A
x+2p<2 S
S
2x-y +220 /e
LA
. (AN
. (AR
Solution: & SIS SERNN %
T, P TN N K SAININE - Nl
. Y s e
The lines TSRS
B0 QRSO SSEIC
L LAY 5557 A2
v-2 -0 S S N S SSSOSSSSSIS
e R BT LI L IS
O S O S S S S S S Y w
RO S ONOE YO OSSOSO NG SS,
. 2ty 2 =0 R RRRTE
(0, 0) satisfies R
S NS
- S
x+2y-2<0,ie x+2y<2. L

.". Solution - region ofx + 2y <2 is the shaded halfplane of x + 2y - 2 =0 containing the origin.

Also (0,0) satisfies 2x - y+ 2 >0, So solution region of 2x - y + 2 > 0 is the shaded half-
plane of 2x - y + 2 =0, containing origin and also including the line 2x - y +2 = 0.
The common double shaded portion is the solution-region of the system.
Example-11
Solve graphically the system :
3x+4y<12,x-y<1,x20,y20.
Solution: ©.3

The solution regions of 3x +4y <12 and
x -y <1 are the respective sides of the lines

3x+4y-12=0, x -y -1=0 containing the

origin.
Solution regions of x > 0 and y > 0 are

the right half-plane of y-axis and the upper
half-plane of x-axis. 3x+4y =12
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So the solution-region of the system is the shaded portion bounded by the polygon OABC
including the sides OA and &, but excluding AB and %, as shown in figure.

Exercises-7 (¢) ‘

Solve the following systems of linear inequalities graphically :

I. 2x-y20,x-2y<0,x<2, y<2.

(Hint : you may consider the point (2,2) to determine SR of the first two inequalities)
x-y<1, y-x<1

x-2y+2<0, x>0

x-y+120 3x +4y<12, x20, y20

xty>1, 3x-y<3, x-3y+3>0

x>y x<1, y>0

o

x<y x>0 y<l1



(CHAPTER 8)

Permutations and Combinations

8.0

8.1

A lightening clears the air of impalpable vapours, so an incisive paradox frees
the human intelligence from the lethargic influence of latent and unsuspected
assumptions. Paradox is the slayer of prejudice.

- Sylvester
Historical Background

In one form or the other counting originated with the primitive man.. As long as it was
within the limits of his fingers and toes he did not find any difficulty. But as soon as it
crossed the limits he found out other devices and at later stage invented the numbers.
Even with numbers when counting became a laborious and time taking affair, and it was
practically impossible to count, he invented new concepts and ideas which gave rise to
permutations and combinations. This idea was known to the people during the Vedic pe-
riod. During the period of Jainism, that is around 6th century B.C., certain formulac on
permutations and combinations were known to the Indians. It was also known to Chinese
around 3rd century B.C. However the first book on permutation and combination ap-
peared during the 17th century written by Jacob Bernoulli (1654 —-1704 A.D.)

How to count without counting

We begin with the following problem. Suppose that we have four vegetables : potato, tomato,
brinjal and cauliflower. We are to cook a curry choosing any two of these vegetables. If the
order in which the vegetables are chosen does not matter, then how many different curries can
be cooked ignoring the way of cooking or spices used ? Let us count the possibilities {potato,
tomato}, {potato, brinjal}, {potato, cauliflower}, {tomato, brinjal}, {tomato, cauliflower},
{brinjal, cauliflower}, these being the only possible combinations of vegetables making a total of
six different curries. Ifthe number of vegetables were more or number of vegetables allowed in
a curry were different, then it would be cumbersome to enumerate all possible combinations and
then count all the possibilities.

We illustrate another idea by another example of this kind. Suppose that we have four
distinguishable balls and six numbered boxes. If we are to distribute the balls into the
boxes, how many different ways of distribution can be there ? Suppose that the set of
balls is {r, b, g, w} and the boxes are numbered 1, 2, 3, 4, 5, 6. In one arrangement, » may
be placed in 1, bin 2, g in 3, w in 4. But this is certainly different from the distribution in
whichrisputin2, bisputin 1, g is put in 4 and w is put in 3. Look at the picture below.

1 2 3 456 I 2 3 45 6

rTeTelw] 1] ] [wle] 1]

The reader is encouraged to try a few more arrangements. Do not attempt to write all the
possible arrangements with pictures as above. There will be as many as 1296 such ar-
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rangements ! (How we arrived at this figure shall be explained later). Another similar example is
to find the number of three digit positive integers with only two digits, namely, 1 and 0. The
reader sees here that 100, 101, 110 are a few of those numbers. We furnish a few more exam-
ples for the reader to think about :

Example 1 :

Suppose Ais a set of n elements and B is a set with m elements. How many functions can

there be fromAto B ?
Example 2 :

How many of the functions in Example 1 are one - to - one, with (i) m = n, (ii)) m < n,

(ii)ym>n?
Example 3 :

Suppose I have to distribute 20 sweets, all of same kind, among five children. If every child
is to receive at least one sweet, in how many ways can I distribute the sweets if I don’t care for
justice or fairplay ?

Example 4 :

How many words can be formed using five given letters of an alphabet whose length does
not exceed 6 if we are not to bother whether any juxtaposition of the letters makes a meaningful
word in the vocabulary or not ?

Example S :

Suppose that I have to travel from Delhi to Calcutta and back in such a way that I can take
a train while travelling from Delhi to Calcutta whereas I am only to take a flight by planes from
Calcutta to Delhi. If there are 10 different trains leaving Delhi for Calcutta and 5 flights from
Calcutta to Delhi, in how many ways can I perform a round trip ?

Example 6 :

If A is a set of » elements, how many bijections are there from A to itself ?

We see in the examples above that sometimes the order in which we choose things is
important and sometimes not. For example, if we are to make a word of length 3 using the
letters #, a and b then ‘bat’ is not the same word as ‘tab’ whereas in using vegetable for a
curry the order in which we choose the vegetables is usually immaterial. The reader is to
keep in mind the difference in these situations.

The reader must have seen that in choosing possibilitiecs we are putting together ob-
jects or elements, a process which is called in ordinary parlance, combination. But we
shall use the word combination in a specific sense to distinguish it from the case where
the order in which they are chosen is important too. These would be called permutations.
But before we formally define any of these terminologies, let us discuss Example 5. When
it is the case of a trip from Delhi to Calcutta and back let 7, 7,, 7, ..... 1, be the trains that
run between Delhi and Calcuttaina day and let £, £, £, f, £, be the flights from Calcutta to Delhi.
The possibilities of round trips are (7, /), (,.f) ...... (s (1, /) where (7, /) means
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that the trip consists of going from Delhi to Calcutta by t, and returning from Calcutta to Delhi by
the flight /. Ingeneral (7, /) would mean the trip in which one travels from Delhi to Calcutta by
the train 7, and returns by the flight /,. We see clearly that there are exactly 10 such possibilities
for every travel from Delhi to Calcutta by train and there are axactly 5 different ways of return.
So, in all, there can be 10 x 5 = 50 ways of round trips. We can now state the following in
general.

A. Counting Principle :

8.2

If we are to choose one element from a set A with » elements first and then one
element from a set B with m elements, then the total number of ways we can make a
choice is exactly m.n.

This is but what one would expect, as the problem is one of finding out the number of
clements in the cartesian product A x B. It is clearly possible to extend this principle to
more than two sets.

EXERCISES 8 (a)

What is the total number of functions that can be defined from the set {1, 2} to the set {1,2,3} ?
A die of six faces marked with the integers 1, 2, 3, 4, 5, 6, one on each face, is thrown twice in
succesion, what is the total number of outcomes thus obtained ?

Five cities A, B, C, D, E are connected to each other by straight roads. What is the total
number of such roads ?

What is the total number of diagonals of a given pentagon ?

There are two routes joining a city A to a city B and three routes joining B to another city
C. In how many ways can a person perform a journey from A to C ?

How many different four lettered words can be formed by using the four letters a, b, ¢, d
while the letters can be repeated ?

What is the sum of all three digit numbers formed by using the digits 1, 2, 3 7

How many different words with two letters can be formed by using the letters of the word
JUNGLE, each containing one vowel and one consonant ?

There are four doors leading to the inside of a cinema hall. In how many ways can a
person enter into it and come out ?

Permutation

We can use the above observations to look at the following problem :

Suppose that there are » distinguishable objectsa, a, ......... a . We are to arrange r of
them in order in a row. How many such arrangements can be there ?

Observe that we are talking of arranging the objects in an order. This means that the order
in which we arrange them is important also. For example, if 7= 3, the arrangement a a, a,is
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different from the arrangement a, a, a,. Since we are to arrange » things in a row, it is useful to
think of'the first position in the arrangement, the second position in the arrangement, ...., the r7A
position in the arrangement. So if we are to place one of the elements from the set {a ., a, ...,
a_} in the first position there are exactly n ways we can do it. Now when it comes to placing an
object in the second position, we have only n — 1 objects left to choose from as one has already
been taken out to occupy the first position. Then for the third place, there are only n — 2 ways to
choose from. So for the /A position, there are n —» + 1 ways to choose from. Hence the total
number of ways of choosing » things in a row from a list of » distinguishable objects is n(n—1) ....
(n—r+1).

It is customary to call this the number of permutations of » things chosen from a list
of n distinguishable objects. We denote this by "P_ and sometimes people denote it by P(n,
r). So we have, for1 <r <n,

"p.o=n(n-1)(n-2) ... n-r+d| e (3.1)

What is then the number of ways in which n things can be arranged in a row ? What we
are asking is a formula for P .

It is clear for (3.1) that when n is a positive integer P, =n (n—1) ..... 3.2. 1.

We denote this expression as r ! (read as factorial n). As an instance, if @, b, c are to
be arranged in a row, then there are 3.2.1 = 6 ways of doing it.
These are

abc,acbh,bac,bca, cab, chba.
We find from (3.1) thatfor I < r <n—1,
Rl ’f‘/r)! ....... (3.2)

We cannot take »=n in (3.2) since we shall then have"P_= Z—: and the symbol 0! does not carry

any meaning as yet. It is therefore convenient to define 0! = 1, so that formula (3.2) also holds
for »=n. Moreover, one can also define "P, =1 for all nonnegative integers » and then
(3.2) is valid for all integers n, » such that 0 < r <n.

Let us illustrate these ideas by a few examples.

Example 7 :

How many 3 - digit numbers can be constructed using the digits 1, 2, 3, 4 without any digit
being repeated ?

Solution :

A 3 - digit number has three places assigned to digits, namely, the unit’s place, the ten’s

place and the hundred’s place. Our problemis to fill up these places out of the four given digits

. |
1,2,3,4.Theanswerls4P3=% =1 x2x3x4=24.
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Example 8 :
How many integer between 10 and 100 (both inclusive) consist of distinct odd digits ?
Solution :
The odd digits are 1, 3, 5, 7, 9. Our integers whose number is being sought, consists of two
digits, since 100 is not of their type. We are, therefore, to choose two digits out of the five odd
5!

digits 1, 3, 5,7, 9 and the answer in °P_ = el =4x5=20

Example 9 :

How many odd integers between 99 and 999 (both inclusive) have distinct digits ?
Solution :
An integer is odd ifits unit’s place has a digit chosen from 1, 3, 5, 7, 9. We wish to find the
number ofall 3 - digit integers whose digit at the hundredth place is one chosen from 1, 2, 3, 4,
5,6,7, 8,9 that is different from its digit at the unit’s place, that is, in 8 possible ways. The digit
at the tenth place is chosen from the integers 0, 1, 2, ..., 9 that is distinct from the digits ofthe
previous two places. The total number space of such integers is, therefore, equalto 5 x 8 x 8
=320
Example 10 :

In how many different ways, can the letters of the word SCHOOL be arranged ?
Solution :

The word SCHOOL contains six letters, the two 0’s amongst them being identical. If we
distiguished between these 0°s designating them as 0, 0,, say, then there would be 6! arrange-
ments. An arrangement such as SCHO,LO, would be decidedly different from the arrangement
SCHO,LO,. This is not the case at present. Hence we shall admit only one arrangement in place
of two, which implies that the required number of arrangements would bei x6!=360.

One may easily extend the ideas embodied in example 10 to more general situations. For
instance, in the word ESTEEM, there are three E’s and three single letters S, T, M, Ifthe E’s
were distinct, there would have been 6! arrangements in total, but under the present circum-

stance, we will admit one arrangement in place of 3! arrangements and so, in place of 6!

. !
arrangements, our required number of arrangements would be % .

In a general situation, several of the letters may be repeated, each being repeated
several times. For instance, the seven - lettered word PREPARE contains two E’s, two P’s

and two R’s, so that the total number of different arrangements is =630

7!
212121
In general, the number of arrangements of p + q + ..... + t things of which p things are

of one kind, q things are of second kind and so on is
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Example 11 :

A coin (unbiased) is tossed three times in succession. How many outcomes are possible ?
Solution :

If H denotes the outcome showing head and T denotes that showing tail, then {H, T} is the
set of possible outcomes after a single toss. After the second toss, the set of outcomes is the
cartesian product set {H, T} < {H, T}
and after the third toss, the set of outcomes for all the three tosses is

{H, T} x {H, T} x {H, T}
which contains 2 x 2 x 2 = 8 elements and is the required number of possible outcomes.

Example 12 :

Find » when
Pn+1,4)=2P(n, 4

Solution :
Prn+1,4)=2P(n,4)isthesameas(n+l)n(n—-1)(n-2)=2n(n-1)(n —=2) (n-3)
>nn-1)n-2)[n+1-2m-3)]=0
>nn-1)n-2)(7T-n)=0
=n =0orlor2or7.
But n > 4 as otherwise P(n, 4) is meaningless.
Hencen =7.

Example 13 :
Find r if 16 P (15, 7) = 13 P (16, )
Solution :
16 P (15, r)=13 P (16, 1)
1615 _ 13.16! _ 13.16!

= (15-1)! (16—1)! (16—1) . (15-1)!
= 16 — r = 13 (cancelling common factors).

=r =3.

Example 14 :
Find »n if
P#,3):Pn+2,3)=6:11
=11P®,3)=6P(n+2 3)

n! (n+2)!  6(m+2) (n+Nn!

=1 o =0 oD D) 1=-2) 1 =3)!
1 (-1 (=-2)=67m+2)(n+1)
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=5n> - 5ln+10=0
=>m-10)Bn-1)=0
since # cannot be a fraction, n = 10.

Example 15 :
In how many ways can » persons sit at a round table instead of sitting in a row ?
Solution :

While sitting at a round table, the relative positions of the persons with respect to one
another is to be considered. For instance, the two arrangements shown in the figure below are
deemed identical.

3 4

Hence we may consider one of the persons fixed and count the number of ways in which the
remaining » — 1 positions can be assigned to the remaining # — 1 persons. This can be done in™®
~'P_ =(n—1)!'ways.. For instance, if four persons A, B, C, D are to be seated around a table,
the various positions are ABCD, ABDC, ACBD, ACDB, ADBC, ADCB giving ris¢ to (4 —1)!
= 3! = arrangements.

EXERCISES 8 (b)

1. Find the number of ways in which 5 different books can arranged on a shelf.
2. Compute"P_for
Hn=8,r=4 (i)n=10,r=3 (lip)n=11,r=0
3. Compute the following :
10!

0 (i) 5! + 6! (iii) 3! x 4!
(‘ )i_l_iﬁ_i ( )2!3! ( i)23'
TR TI T V) vh &=

4. Show that

!
2.6.10 ....... to n factors= (2”_”")



[170 Llements of Mathematics, Vol- |
5. FindrifP (20,r)=13.P(20,r-1)

6. FindnifP(#n,4)=12.P(n,2)

7. IfPm—-1,3):Pm+1,3)=5:12, findn.

8. FindmandnifP (m+n,2)=56,P(m—n,2)=12.

9. Show that

10.
11.
12.

13.

14.
15.

16.

17.

18.

19.
20.

21.
22.

8.3

(1) P (n,n)=P (n, n-1)forall positive integers.

(@) P (m, 1)+P(n, 1)=P (m+n, 1) forall positive integers m, n.

How many two digit even numbers of distinct digits can be formed with the digits 1, 2, 3,4, 5 ?
How many 5-digit odd numbers with distinct digits can be formed with the digits 0, 1,2,3,4 ?
How many numbers, each less than 400 can be formed with the digits 1, 2, 3, 4, 5, 6 if repetition
of digits is allowed ?

How many four - digit even numbers with distinct digits can be formed out of the digits 0, 1, 2,
3,4,5,67

How many integers between 100 and 1000 (both inclusive) consists of distinct odd digits ?
An unbiased die of six faces, marked with the integers 1, 2, 3, 4, 5, 6, one on each face, is
thrown thrice in succession. What is the total number of outcomes ?

What is the total number of integers with distinct digits that exceed 5500 and do not
contain 0, 7 and 9 ?

Find the total number of ways in which the letters of the word PRESENTATION can be
arranged.

Find the numbers of all 4-lettered words (not necessarily having meaning) that can be
formed using the letters of the word BOOKLET.

In how many ways can 2 boys and 3 girls sit in a row so that no two girls sit side by side ?

Five red marbles, four white marbles and three blue marbles of the same shape and size
are placed in a row. Find the total number of possible arrangements.

Solve Example 2.

In how many ways can three men and three women sit at a round table so that no two men
can occupy adjacent positions ?

Combination

As we have just seen, a permutation is an ordered arrangement of objects. There are,
however, situations in which order is not significant. For instance, suppose that in an examination,
a student hasto answer any three questions out of a total of five. In how many ways can this be
done ?As another example, suppose that a college offersinstruction in six subjects, namely,
Physics, Chemistry, M athematics, Statistics, Computer and Biology. A student seeking admission
in the collegeis asked to choose any four subjects out of these. In how many ways can a student
do itif heis not asked to indicate his choice in order of preference 7 1n each case, a selection is
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to be made without regard to order. We call it a combination. The number of combinations of
r objects out of 7 objects is denoted by "C_ or C (n, ) or sometimes by, (}7) where 0 <r<n.

We now proceed to compute a formula for C (n, »). This indeed can be derived from the
formula for P(n, ). As explained above, to determine C (n, #), we count the number of ways in
which 7 objects can be chosen out of n given objects. Any one of these choices is simply a
collection of » objects which can be ordered in P(7 ») = r! ways. A total of P(n, ) ordered
selections is made after ordering each of the C(n, r) collections of 7 objects. Hence, one must
have P (n, ¥)=r! C (n, r) and so

1 ! nn —1)..... (n—r+1)
C 1) = 3 POL = 61 = (7 D) (D) 2] (3.3)
From (3.3), we immediately note that C (n, r) = C (n, n —r). 3.4)

In particular,C (n, 0) =C (n, n) = 1.
Let us apply (3.3) to the question of finding the number of ways in which three

. . | .
questions can be selected out of five. The answer is °C, = % = 10. If the questions are

numbered as a, b, ¢, d, e, the various combinations are abc, abd, abe, acd, ace, ade, bcd,
bce, bde, cde.

Formula (3.3) has a curious number theoretic interpretation. It is undoubtedly a fact
that C(n, r) is always a positve integer for all » such that 0 < » < n since one can then
always select » objects out of n objects. It follows from (3.3) that (n —r+ 1) (n—r + 2) ....n
which is a product of » consecutive positive integers, is always divisible by 7!. This is an
instance of a combinatorial proof of a number theoretic statement.

The following result, known as Pascal’s formula, is also of this type, which states that
°C_==I1C +™IC_. (3.5)
This can of course, be proved by using (3.3), but the following proofusing general reasoning is
worth considering.

From the list of# given objects, fix a particular object A. A combination of 7 objects out of
these n objects may contain A or may not contain A. For forming combinations ofr objects that
contains A, one has to choose »— 1 objects from the n — 1 objects that do not include A and
their total number is*'C_ . On the other hand, if a combination ofr objects does not include A,
it must be chosen from the #» — 1 objects that do not include A, so that the total number in this
case is" ' C. Since the totality of all combinations is "C_in number, Pascal’s formula follows.

Let us try to illustrate our ideas by solving a few more examples including those given in
section 8-1. Consider example 1 which deals with the question of determining the number of
functions that can be defined from a set A having n ¢lements to a set B having m ¢lements. Let us
takeA={a,,...... ,ay,B=1{b, ..., b _} Iff:A— Bisa function, then f(a ) can take any one
ofthe m values b, ....., b_. Similarly f(a,) may take any one of the m values b ..., b _andso on.
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Thus, there are exactly m® such functions.

This principle answers the problem of finding the number of ways in which » distinguishable
balls can be placed in m boxes. Since the first ball can be placed in any one of the m boxes, the
second and others can also be placed similarly, the total number of choices is m*. Thus if four
balls b, g, ware to be placed in six boxes 1, 2, 3, 4, 5, 6, the total number of choices in 6*=
1296.

Suppose that we wish to find the number of subsets that a set with » elements can have. A
subset may consist of no elements, one element, two elements and so on up to n elements. It is,
therefore, immediate that the total number of subsets is

"C,tC, + . +C (3.6)
But how much does the above sum add up to ? The problem can be looked at in a different way.
Let the givenset be A= {a,,...., a_}. For each subset B of A, there is a function £ : A

— {0, 1} givenbyf, (a)=1ifa e Band f, (a) =0 otherwise. Conversely, for every : A —
{0,1},B={a, : f(a) =1} c Aand /= /.. Thus there is a one - to - one correspondence
between the subsets of A and the functions /: A — {0, 1}. We have already seen that there are
exactly 2* such functions and hence we have the formula.

"C,+"C +.....+°C_=2" (3.6)
for any non-negative integer »n. There is a differnt proof of (3.6) by induction, which the reader
may try. Formula (3.6) can be proved in yet another way by using the Binomial Theorem, dealt
with in a subsequent section.

Now let us take the questions of distributing n objects in m boxes when the objects are not
distinguishable.

010 0 0 00

It is clear that there may be cases when some boxes are empty and there are cases when more
than one object are filled in a single box.

Let us add on extra object to each box, so that the number that we wish to find out is the same as
the number of ways in whichm + n objects can be distributed in mboxes when no box is empty. A
typical distribution will look like the figure below when the boxes are placed in a row !
0010|0000 {..|00/|000
There are m — 1 walls that separate the objects and these walls may occur at any one of the

m + n— 1 gaps between the m + n objects. So the number of distributions sought is exactly
the number of ways in which (m — 1) positions can be selected from (m + n — 1) positions,

that is,
. . (m +n—1)!
G =G = s
Example 16 :

The number of combinations of » different objects taken » at a time in which
() one particular thing always occursis C(n—1,r—1)
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(i1) one particular thing never cocursis C (n—1, r)

Since one particular thing is to occur in all the combinations we are to select »— 1 things
from the rest n» — 1 things and add with the particular thing. This can be doneinC(n —1,r—1)
ways, which is the required number.

Since one particular thing is not to occur at all, we are to select r things from the rest n— 1
things in all possible ways. Hence the required number is C (n —1, 7).

Example 17 :
Find the value of» and » when P (n, ) = 1680 and C (n, r) = 70.

Solution : Now

Pn, r) _ 1680 _ 5y

C(n, r) 70
orrl =24=4|
sor=4.

But P (n, ¥) = 1680
ieP(nd4)=1680
ien(n-1)(n-2)(n-3)=8.7.65
So n=28.

Example 18 :

There are 8 boys and 6 girls. In how many ways can a committee of 4 boys and 2 girls be
formed ? In how many different ways can they be arranged in a row ?

Solution :

4 boys out of 8 can be selected in C (8, 4) different ways.

2 girls out of 6 girls can be selected in C (6, 2) different ways.

Since each group of boys can be associated with each group of girls to form the com-
mittee, the total number of ways of selecting 4 boys and 2 girls is

8765 6.5 _ _
1234 - 1.2 /0. 15=1050.

Further, each of these groups contains 6 members who can be arranged among them-

C@B,4).C(6,2)=

selves in 6! ways. Hence the required number of arrangements in a row = 1050 (6!) =
756000.

Example 19 :

Find the number of diagonals of a polygon of n sides.
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Solution :

A polygon of # sides has » vertices. The join of any two of’its vertices is either a side or a
diagonal. We can choose two vertices out of n in C(n, 2) different ways. So the number of
diagonals +n=C (n, 2)
or, the number of diagonals =C(n, 2)—n

_ nn-1) = n? —3n _ n(n-3)
1.2 2 2

Example 20 :

A bag contains 4 black and 5 white balls from which 6 balls are drawn.. Determine the
number of ways in which at least 3 black balls can be drawn.

Solution :

Since atleast 3 black balls are to be drawn, the possibilities are :
(1) 3 blacks and 3 whites (i) 4 blacks and 2 whites

Case(i) : 3 black balls from 4 black balls and 3 white balls from 5 white balls can be drawn
in C (4, 3) . C (5, 3) different ways.

5.4

1.2

Case (i1) : 4 black and 2 wihite balls can be drawn in C(4, 4) . C(5, 2) different ways

5 x4

1.2
Hence the total number of ways = 40 + 10 = 50.

:4)(

= 40 different ways.

:1)(

= 10 different ways.

EXERCISES 8 (¢)

1. Compute the following :

(i) 1203 (ii) 15C12 (iii) ‘)C,. + 9C5
(iv) 7C3 + 6C4 + 6C3 (V) SCO + 8C1 + ...+ 8CS.

2. Solve:
(i) *C,="C,: (i) C, : °C, =44 : 5.

3. Find n and r if"P_= 1680, "C = 70.
4. How many diagonals can an n — gon (a polygon with » sides) have ?

5. Ifaset Ahasn elements and another set B has m elements, what is the number of relations from
AtoB?

6. From five consonants and four vowels, how many words can be formed consisting of three
consonants and two vowels ?
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10.
11.

12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.

23,

24.

25.

In how many ways can a committee of four gentlemen and three ladies be formed out of seven
gentlemen and six ladies ?

Abag contains 4 black and 5 white balls out of which 6 balls are drawn arbitrarily. In how many
ways can this be done ? Find also the number of ways such that at least 3 black balls can be
drawn.

How many triangles can be drawn by joining the vertices of a decagon ?
How many triangles can be drawn by joining the vertices and the centre ofa regular hexagon ?

Sixty points lie on a plane, out of which no three points are collinear. How many straight lines
can be formed by joining pairs of points ?

In how many ways can 10 boys and 10 girls sit in a row so that no two boys sit together ?

In how many ways can six men and seven girls sit in a row so that the girls always sit together ?
How many factors does 1155 have that are divisible by 3 ?

How many factors does 210 have ?

Ifnis aproduct of £ distinct primes, what is the total number of factors ofn ?

If m has the prime factor decomposition rip” p,» what is the total number of factors of
m (excluding 1) ?

I£20 ! were multiplied out, how many consecutive zeros would it have on the right ?
How many factors of 10,000 end with a 5 on the right ?

A man has 6 friends. In how many ways can he invite two or more to a dinner party ?

In how many ways can a student choose 5 courses out of 9 if 2 courses are compulsory ?

In how many ways can a student choose five courses out of the courses C,, C, ... C if C,, C,
are compulsory and C_, C, can not be taken together ?

A cricket team consisting of 11 palyers is to be chosen from & batsmen and 5 bowlers. In how
many ways can the team be chosen so as to include at least 3 bowlers ?

There are n + r points on a plane out of which » points lie on a straight line L and out of the
remaining » points that lie outside Lno three points are collinear. What is the number of straight
lines that can be formed by joining pairs of these points ?

There are 10 books in a shelf with different titles; five of these have red cover and others have
green cover. In how many way can these be arranged so that the red books are placed together ?



(CHAPTER 9)

Binomial Theorem

The essence of mathematics lies in its freedom.

- Sylvester
9.0 The Historical Background :

Binomial expansion for the case n = 2 was used by the Greek mathematician Euclid around
300 BC. During that period the Hindu Mathematicians also knew about the coefficients of the
binomial expansion. However, the Arab mathematician Omar Khayyam (1048 — 1122 A.D) is
credited with the binomial expansion for higher natural numbers. Some earlier work on binomial
expansions was also done by the Indian and Chinese mathematicians. The German mathemati-
cian Michael Stifel (1486 — 1567) first introduced the term binomial coefficient sometimes around
1544 A.D. and the great British scientist Sir Isaac Newton (1642 — 1727 A.D.) generalized the
binomial theorem for negative integral and fractional indices in 1665. Colin Maclaurin (1691 —
1746 A.D); Abraham G. Kastner (1719 — 1800AD); Leonhard Euler (1707 — 1783 A.D) and
many others have given proofs of binomial theorem for real integral and fractional exponents.
But binomial theorm for complex indices was given by Niels Henrik Abel (1802 — 1829 A. D).

The sum of two distinct terms, like x + y, is called a binomial. A formula for the
power of binomial, i.e. (x + )", n € N is known as the binomial theorem. We are already
familiar with the binomial expansions in the particular casesn=1, 2, 3,4, 5 etc viz :
for n=1(a+b)}=a+b

n=2(a+b?=(@a+b)(a+b)=aa+ab+ ba+ bb=a*+2ab + b*

n=3,(at+b)y}=(@+b)(a+b)(a+b)

= aaa + aab + aba + abb + baa + bab + bba + bbb = a* + 3a*b + 3ab?

+ b3

n=4, (a+b)=(@+>b)(a+b)(a+b)(a+b)=a'+4a’b + 6a*h*> + 4ab’ + b*.

n=51(a+hb)?=(@+b)(a+hb)(a+b)(a+b)(a-+b)

=a’ + 5a’b + 10a°b? + 10a°b? + Sab? + b’
We notice that when » becomes larger the actual process of multiplication becomes unmanageably
tedius. Thus, before writing a general formula for (a + b)" let us have a fresh look at the process

of multiplication carried out in the simple cases ofn =2, 3 etc.

The case n=2. Suppose instead of multiplying (a + b) (a + b) we were to start with (a + b) (¢ +
d),a, b, ¢, d, all distinct. Then we shall get
(a+b)(ct+d)y=ac +ad + bc + bd.
There are four terms in the expansion. Each is a product oftwo symbols, one symbol taken from
the first parenthesis and the other symbol taken from the second parenthesis. We know that
there are exactly 2.2 = 4 ways to choose one symbol from one parenthesis and the other from
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the second. This also explains why there are 4 terms in the expansion. In the case of (e + b) (a + b)
only two symbols a and b are distinct. Thus, after multiplication, the terms such as ab and baq,
are paired to make 2ab. Finally we get

(a+b(a+b)y=--=a*+2ab+ b
There are exactly three terms in the expansion.

The case n = 3. Suppose we were to start with (@ + ) (¢ + d) (e +f), a, b, ¢, d, e, fall distinct. We shall
get (a +b)(c +d)(e+f)=ace+ acf + ade + adf + bce +bcf + bed + bdyf.

Each term in the expansion is a product of three symbols, one symbol taken from each parenthe-
sis. We know that there are precisely 2 . 2 . 2 =8 ways to choose three distinct symbols from
three distinct binomials. We did not have to count the terms in the expansion but could say that
there are eight terms. When we multiply (a+ b) (a+b) (a+b), only two symbolsi.e. a and b are
distinct. So in the product some symbols are repeated. For example we get terms aab, aba, baa
(a is taken from first and second parathesis, b from 3rd;
a is taken from first and third parenthesis, b from second;
a is taken from second and third parenthesis, » from 1st.)
We know that in a set of three symbols if 2 are alike (repeated), these can be arranged in°C =
3 ways. Thus out of 8 terms in the final product there shall be 3 terms of the forma?.
For the same reason there shall be °C, = 1 term of the form a’5° = a’; there shall be °C, =3
terms of the form ab® and °C, = 1 term of the form a°h> = b*, Thus

(a + b)*=a*+3a’h + 3ab*+ b’
All the 8 terms, finally reduce to 4 terms.
Case n =4 The reader is invited to provide an explanation for this.
Casen =5
(a +by=(a+b)(a+b)(a+b)(a+b)(a+b)
Ifwe openup the brackets, there shall be 2° terms, each termis a product of 5 symbols but not all the
symbols are distinct (@ and b can occur repeatedly) :
Inatermifarepeated 5 times » does not occur at all

if a is repeated 4 times b occurs only once

ifa isrepeated 3 times b is repeated twice

ifais repeated 2 times b is repeated thrice

if a occurs once b/ is repeated 4 times

ifa doesn’t occur at all b is repeated 5 times.
Thus if the symbol a is repeated » times (0 <r < 5) in which case b occurs 5 — r times then the number
of such terms in°C (0 < <5) and this contributes the term°C_a"b°~*Now taking =0, 1,2, 3, 4,
5,Weget(a+by="C a’+°C a'b+°Cah’+°C,a’h’+°C,a'b*+°Ch’=a’ + 5a*b+ 10a°D’
+ 10a°h* + S5ab* + b°.
Notice that finally there are exactly 6 terms in the expansion of (a + b)°.
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9.1

We now prove the general result.
BINOMIAL THEOREM (For positive integral index)
Forn=1,2,3,...anda, b e R
(@t by=a+Ca'b+"Ca?+. .. +Cab+ .. +C_ ab'+0. .. .. (1)
Proof. By definition (@ + b)*=(a + b)(a + b) ......... (a + b) (n factors)
Ifthe symbola is chosen fromall the factors then we get a" and this can be done in"C ="C_=1 way.
So the coefficient ofa® is *C = 1.

Ifais taken from (n —1) factors then b automatically comes from one factor. This can be done in
"C,="C_, ways. So the coefficient of a*'b is "C,.

In general, if a is taken from (n—1) (0 <1 <n) factors, b is chosen from the rest r factors, then
this can be done in*C_ways. Thus the coefficient of a* 5" is equal to *C.

Finally, when only b is chosen from all the # factors then we get 4". This can be done in *C_=*C,
= 1 way. So the coeflicient of 5" is equal to 1.

Addition of all the terms gives : (a + by’ =a"+"C .a* b+ +*C.a" b+ ... + b

An alternative proof applying induction :

Proof:

Take p, : (atb)y'=a"+"C,a"'b+ ... +*C a”b ... +"C b

Then clearly it is true forn=1.

Supposeitis true forn=k.

Then

(a+b)<'=(a+h) (a+h) = (a+C,d" b+ .. +b")(a + b)

=a"'+ (*CH) db+ ... (*C_+*C_)d*"'b+ .. +b

(by collecting the coefficients oflike powers ofa and b)

=@ +¥1C d*b + ..+ C T L+ D

(by using the fact that *C_+*C_ =*"C (1 <r <k ) (See Pascal’s fomula in chapter- 8)
Hencep, . is true.

This proves that p_is true for all n.

Remarks

() the general term in the binomial expansion is*C a*~*»* and all the terms are obtained by taking
r=0,1,2, ... ngiving rise to exactly (» + 1) terms. So in each term sum of powers of a and b
isalwaysn=r+(n—r).

(i) Pascal Triangle
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The cofficients with binomial expansion can be arranged in the following triangle pattern named
after Blaise Pascal (1623 —1662). See the following figure.

n=1 1 1

ATE
\AA
, /\/\/\A
ns/\/\/\/\/\

NN
ATATATATAT AT

(Fascal's [riangie)

Any coefficient in arow in the triangle is obtained by adding the coefficients to its immediate
left and the coefficient to the immediate right in the preceding row.

(1)) Using the above formula we can see the following expansions :
1. (a—by»=(@+ (D))"
=a" —"c a" ' h+rc, a7+ .+ (=) e at b+
+ (_l)n_lncn,l
2. (L+x)r=1-+5cx+0c,x%+ . 0% x + ..+ x
3. (d-xyr=l-r¢x+rcx’+. . +De x+. .+ (D e+ (=D

a b+ (=10 B (2)

BINOMIAL COEFFICIENTS

The numbers *C, r=0, 1, 2 .... n, are called binomial coefficients. Note that although "C is
expressed in the form of fractions, these are actually natural numbers (Why ?)
GENERAL TERM

Ift,t ...t .. tt aretheterms in the expansionof(a + b)* thenthe (»+ 1) termis called
17 2 r+1 n nt+l

the general term.

t, ="C a"* b &)

EQUIDISTANT TERMS
It can be verified that the (» + 1)® term form the beginning =7, ="C_. a" " b"and the (r+
1)™ term form the end which is equal to the (z + 1 — 7)™ term from the beginning
=t ="C___ab" "

nt+l-r

Since*C ="C___the coefficients of the equidstant terms from beginning and end are equal.
MIDDLE TERMS
We know that in a collection of odd number of ordered terms there can be only one middle term. Simikrly

in a collection of even number of ordered terms there are always two middle terms.
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In the binomial expansion of (a + b)" there are (n + 1) terms. Thus, there is only one middle

term if 7 is even and there are two middle terms if » is odd.

(a) Letn be even say n=2m. Then the middle term is equal to

Z‘erl:zm(:mambmzn(j t£+l

2
(b) Letn beoddsayn=2m+ I, thenthe two middle terms , and:__ . are given by

b b? =

1ol

— m+1 flpm— n n+l n-1 _ Tpy
tm+l . Cmam bm CHT71 a 2 b 2 T

— 2m+1 +l—1n n-l n+tl = tne3
tm-*—z_ " (jm-*-lambm - C%l a 2 b 2 2 )

The two middle terms happen to be equidistant terms also. hence their binomial coefficients must
be equal. Verify that

"Cno1 = ncn;rl,
2

9.2 Applications :
Example 1 :

14
Find the middle term in the expansion of (Xz + %J
X

Solution :

n=14, So there are 15 (odd) terms in the expansion and there is only one middle term1i.c. t, .,

;
_ 2| L
= ts — 14C7 (X2)14 7 (X3J
=2.12. 11 .13 x7
Example 2 :

Find the middle term in the expansion of (3a + 9¢)"’.

Solution :
n=11. So there are 12 (even) terms in the expansion and there are two middle terms :

t%l =t6and tnTH :t7

|
(= "1C, (3a)"' % (9)" = gy 3% 99 ¢ = 3 x 462 afc?

t="C (32" °(9c)° =66 x 7.3 a3 cf=3"x462a . c.
Example 3 :

\5
(a) Find the 7" termin the expansion of (37(3 —% %J
X

(b) Isthere aterm independent ofx in the above expansion ? Ifyes, find it.
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Solution :

2N (1 6
@ 1,= %, Gey 1y (3) (X—zj
=150 26 3327-12 =926 33 5005 x!°
s 20 .3
(b) Supposet__ is the termindependent of x.

2 1
Then t[H = 15Cr . 315—I(x3)15—r (_1)r (?) >
X

—cayre e (2) xon

This term is independent of x = 45-5r=0=r=9.
Yes the tenth term, is independent of x and the term is

9 9 9
2 2 2
- 15C9 36 39 = - 15C9 3 =—5005 x 33

Example 4 :
Using Binomial Theorem find the value of (0.999) correct upto three places of decimal.

Solution :
(0.999) = (1 —0.001)* =1 -4 (0.001) + 6 (0.001)* — 4 (0.001) + (0.001)*
Note that (0.001)>= 0.000001
(0.001)*=0.00 00 00 00 1

(0.001)*=0.0 ... ... 0..01
Eleven zeros
So these numbers do not contribute up to third place of decimal in the above expansion.

5 (0.999) ~ 1-0.004 =0.996

Example S :
If n is a positive integer and (x + 1)" is expanded in decreasing powers of x, the consecutive
coefficients are inthe ratio 2 : 15 : 70. Find n.

Solution :
+1p=x+oC xt+ L +0C  x T C T+ C T L+ ]
By hypothesis
"G o G s

= - and
nCr 15 nCr+1 70

r+l1 _ 15

r_2
nrl-—r 15 ad o = 55

=2n—17r==2and 3n-17r=14
Solving for n we get n=16.
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Example 6 :
If n is a positive integer then show that 5**—24n— 1 is divisible by 576.
Solution :
5% —24n—-1=25"-24n-1
=(1+242-24n—1=(1+C @, 1)24+C (n,2) 24>+ ... + C(n, n)24") — 24n— 1
=242 (C (n,2) + C(n,3) 24 +.......+ C(n, n) 24°-2)
= 576 x a positive integer.

Hence 5 —24n — 1 is divisible by 576.

Example 7 : Find the value of

(a+ \132_1)74‘(&— 1/a2—1)7

Solution:  (a+ [ ;2 _1)V+@—J,2_1)
=@+C(LDa* 2 | +C(1.)a (J2_1P+C(TL3a (J2_1P+C(T. 49
@ (f2 1) +CANP 2 1)+ C(TL a2 1 +([2 1)V +{d-C(T D
@ (J2_ 1N+ CADA(J2_17P-C(13)a" (.2 1P +C (1. H & (J,2_1)'~C(7.5)
@ (2 1P+ C(76)a( 21— (21

=2{ad+C(2a@-1)+C(7,4da (a*-1P*+C(7,6)a(a*-1)}

=2 (' + # (@ —a%) + % @ (@ = 2d + 1) + Ta (a° = 3a* + 3a® — 1)}
=2 (a"+2la’ - 12a° + 354" — 70a° + 35a° + Ta’ — 21a° + 21a° — Ta)

=2 (64a" — 112a° + 564> — Ta).

EXERCISES 9 (a)

1. Therowsn =06 and »="7 in Pascal triangle have been kept vacant. Fill in the gaps.

2. Write down the expansion of (a + b)® using Pascal’s triangle.

4
3. Find the 3rd term in the expansion of (296 3 %J using rules of Pascal Triangle.
X
4. Expand the following
-9 Y 7.\
@ (Ta+3b) ®) (Tax +b) © (a -1 )

5. Apply Binomial theorem to find the value of (1.01)°
6. State true or false
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10.

11.

12.

13.
14.

15.

6
(a) The number of terms in the expansion of (-7(2 -2+ %J isequalto 7.
X

9
. . . . 2
(b) Thereisa termindependent of bothx and y in the expansion of (x + _ylz }

20
(¢) The highest power in the expansion of x* (xz + X%J is equal to 40.
(d) The product of K consecutive natural numbers is divisible by K !

Answer the following

(a) If 6™ term in the expansion of (x + *)" is equal to *C, x* ' find *.
(b) Find the number of terms in the expansion of (1 +x)" (1 —x)".

(© Find the value of"C_ /"C.

10
(d) How many terms in the expansion of (g + %) have positive powers of a, how many have

negative powersofa. ?
Find the middle term (s) in the expansion of the following.

6 9 33y
@ (42 ® (> +3) © |22
A0
Find the 6 term in the expansion of (x 2 +a—2] )
y

10
3
(a) Find the fifth term in the expansion of [6x - aT] )
(b) Isthere atermindependent ofx ? If yes find it out.

0
7
. . . . 3
(a) Find the coeflicient of % in the expansion of ( Yo+ “—S]
Y y
(b) Does there exist a term independent of y in the above expansion ?

10
(a) Find the coefficient of x* in the expansion of (1 +3x + 10x?) (x + %) )

(b) Find the termindependent of x in the above expansion.
Show that the coefficient of @ and a" in the expansion of (1 +a)™ ™ are equal.
An expression of the form (a + b +c +d+....) consisting of sum of many distinct symbols is called

a multinomial. Show that (a + b + ¢)* is the sum of all terms of the form 1 arbict

n!
rlq
where p, g and r range over all possible triples of non negative integer such thatp +g +r=n..
State and prove a multinomial Theorem.
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9.3 Further Applications :
IDENTITIES INVOLVING BINOMIAL COEFFICIENTS.

Throughout this section, for convenience of notation we shalluse C, C,, C,.... C respec-
tively in place of*C, *C,, *C,, .... "C, . Infact, when the context is clear it saves extra effort by
dropping n.

We know that

(I+x=C+Cx+Cx¥+Cx’+ ... +C _ x'+Cx" @)

1

Putting x =Iland x=—1 in (4) we have respectively

C,+C+C +....+C =20 ®)

C,-C+C +..+(=)C =0 (6)
Adding (5) and (6) and subtracting (6) from (5) we get respectively

C,+C,+C,+...=22" @)

C,+C+C,+. .. =20 ®)
We summarize :

For a given n, the sum of the even numbered binomial coefficients is equal to the sum of odd
numbered binomial coefficients and both sums are equal to 2°-2,

We know that
ncr + ncr—l - n+1cr (9)
Again
"+ _ (n+1)' _ (n+1)n! _ n { 1 N
C= i = =N m-rtrl ~nti=r) G (10)
Therefore (9) can be written as
_ n+l
Cr+cr—l - (n+1—}") Cr (11)

Ifweputr=1,2,3, ... n successivelyin (11) we get

c,+¢,=2Hc

_ n+l
C2+C1_ﬁ Cz

_ ntl
C+C =53 G
C+C  =mn+DC
Multiplying all the terms we get

1C)= (n+1)...(n+1)

(C,+CH(C,+C)H(C,+C)....(C_, +C, n(n—1).1

Thus,

CC,...C

n
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(1+&] (1+&J (1+&J (1+&]{”+1)N ... (12)
C, ¢, ¢, C,. n!
Example 8 : Evaluate
C0,DH+C((10,2)+ ...... +C (10, 10)
Solution : (1+x)°=C,+Cx+Cx*+ ... +Cx"
Putting x =1, 21°=C (10, 0) + C (10, 1) + .... + C (10, 10)
or C (10, 1)+ C (10,2) + ...+ C (10, 10) =21 —C (10, 0) =210 — 1.

Example 9 :

IfP be the sumofthe odd terms and Q be the sum ofthe even terms in the expansion of (a +x)",
then prove that (a* — x?)* = P> - Q.

Solution : (a +x*=C#,0)a*+Cm, D)a*'x+Cn,2)a**x*+..+C(m nx*=P+Q
and (a—xy*=Cmn,0)a"-Cmn, Da'x+Cm2)a**x¥—...+(=1)Cm nx*=P-Q
Hence (a* —x*)*=P* - Q.
Example 10 :
Three consecutive coefficients in the expansion of (1 +x)" are theratio 2 : 4 : 5. Find ».
Solution : Let three consecutive coefficients be C(n, r— 1), C (n, ¥) and C (n, r+ 1)
Then

Cnr=1) _ Cnr) _ Cnr+1)
2 q 5

n! n! n!

T —Dt(n—r+D)! &l (n-r) 5@ +1)! (n —r-1)

: !
Now cancelling the non-zero factor =11 E?ﬁ; )Y

fi hwe get ! oS- o
OMECACAWe ECt 5 = T (n —r+1)  dr(n —r) _ 5r(r +1)°

; 1 _ 1 1 _ 1 _
Takmgz(n_r)(n_r+1)_4r(n_F)Weget,m_ﬂor?’r_n'i‘l.

. 1 _ 1 B B B
Taking drin—r) _ Sr(r+1) ,wegetdn=9r+5=3(n+1)+5=3n+8§,

= n=24.

Example 11 :

1
(n+1)

Find the sumof 1+ 1 C,+ 1 C, +.... + C.

. 1 1 1 1
Solution : 1 + 5 C1+ § C2+ ZC3+....+ (f’l+l) Cn
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=1+ln+l n(n—l)+ n(n—l)(n—Z)_'_' L

1 1
273 2 4 31 T+

--L [(wm i DW=l . 1}

(nJlrl) [u+lC1 + u+lC2 + + n+lC

n+ 1]

= G [P, + 21IC, +2C, L+2C, ~ 1

n+l

Gy 1277 11 (use (5) here)

Example 12 :

. Cl C2 C3 Cn
Flndthesumofc—0 +2 ==+3 + +nC—

Cl g ..... n-1
C _
Solution : We know r_ntl-r
r—1 r
Puttingr=1, 2, ....n, we get
L ,8, G C,y
Co +2 C +3 C, Jr....Jrf'ICW_1
_ n —1 n =2 1
=n+2 3 +3 3 +___+nn
=n+(-D+n-2)+..+1= ”(”2“)
Example 13 : Show that
(2n)!
(Cy+(C)+. ... (Cn)*= (n _,)2

Solution : Since we are to sum the squares of binomial coefficients, by considering the coefficients of (1 +

x)" alone we may not get the result. We apply a special trick :

(l1+ar=C+Ca+Ca+..+Ca 13)
and
(@+1y=Ca"+Ca'+Ca?+ ... +C (14)

If we multiply both sides of (13) and (14) we get
(l+a=C,+Ca+Ca+...+Ca)(Ca"+Ca' +Ca?+..+C) as)

On the other hand the binomial expansion of (1 +a)* is given by
(I1+a»=2C +*Ca+>Ca*+..+*C_a'+*C a"+*C a"+. .. +a (16)

Therefore, the coefficients of @ in the righthand side of (15) and (16) must be equal.
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Coflicient of a*in (15) is equal to
(CP+(C)+(C)+...(C)

en! @)

The coefficient ofa” in (16) s equal to *C, = ‘u/y (nl) ~ ;2
@n)!

We have thus got (C)* +(C >+ ... +(C)*= (nh?

Some problems involving Binomial coefficients can also be solved by using differentiation
(to be dealt with in ch-14) and integration (Vol-1I)

Example 14 : Prove that :

(This is not for examination Interested students may go through it afier knowing integration in
Vol-1I)

() C} -2°C, +3C,— ...+ (=D)* m+1)*C =0 n>2

304 0 T n+2 (n+1)(n+2)

(This part is not for examination. Interested students may cover it afier getting through integration
in Vol-IT)

Solution :
(1 We have
C,+HCx+Cx+. . +Cx"=(1+x) ... (a)
=>Cx+Cx¥+Cx¥+ . +Cx"' =x(1+x)"... (b)

Now differentiating (b) we get

C,+2Cx+3C ¥+ .. +(n+ 1) Cx=(1+x+nx(1+x)°"
=2 Cx+2Cx* +3Cx + ..+ (n+ 1) Cx"!

=x(1+x)"+n?(1+x)""...(c)

Differentiating (c), we have
CH2?Cx+3Cx+. .+t ’Cx" =1 +x)"+3nx (I+x)" '+nm-1) ¥ (1 +x)*°
Putting x = — 1 in the above identity we get

C,-2C, +3C,— ..+ (1) +1)’C =0

(i) Integrating (b) above w.r.t x between O and 1 we get

+2 1
C, x>+ CX +C, X+, +cﬂ’1§+2 o=, x(+xrdx

2
Cy C; Gy C,
=0 ,21,.>-2 + +
L.H.S 3 + 3 + 3 et
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RHS=

1 1
x(1+ x)"*! 1+x)"™!
n+1 - n+1  dx

1
B 21’1+1 _ 1 {(1+X)n+2:|

“n+l n+l1 n+2

2n+1 2n+2 _1 n2n+1 +1
n+l (n+D(n+2) (n+)@n+2)
Hence proved.

EXERCISES -9 (b)

1. Provethat
@® *C,+*C,+ ... +xC, =271
(i) *C, +*C,+ ... +2C, | =227t
2. Find the sum of
@) C, +2C,+3C +...+nC
(i) C,+2C, +3C,+...+(n+ 1) C,
Hint : Write thisas (C,+ C, +.... + C) +(C, +2C, + ... +nC ) use (5) and Exercise 1.

(1+k)(1+%) _____ (1+%)

k
4. Showthat
. _ (2n)!
) CC,+CC+CC+ o +CCo= T (o T
(2n)!

(ip)CC+CC_ +CC ,+...+C C =
Hint : Proceed as in Example -13. Compare the coefficient of a*~! to get (i) and the coefficient of
a" "to get (i)

Write the result of (ii) forr=2.

(i) 3 C-8C +13C,-18 C.+ ...+ (n+1)*term = 0

() Cn*+C(2-n?+C,(4-n)y+.... +C_ (2n—n)*=n2"

v) C,-2C, +3C,+...+(I)n+1)C =0

(vi) C,+3C, +5C,+....+(2n+1) C =(n+1)2"
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10.

Find the sumof'the following

@ C,—-2C,+3C,—..+n(1)"'C,
(i) 1.2C,+2.3C,+....+(n—-DnC
(iii) C, +2°C, + 3°C, + ... +n°C_

n

) C,= 3C,+3C,— .+ (-1 = C

Show that
; 2 2 2 2 7(2n—1)!
() CP+2C+3C + .. +nCr=" T3
@ C,+2C,+3C,+ .. +(n-DC =1+m-2)2""!
Prove that

_ 1 1~ _ qa+l Lo = 1 1
C, 2C2+3C3 ......... + (=1) nCu 1+2+...+n
Prove that

_ 2" nl35..2n-1)
CC+CC +..+C _C = it D)1
1 1 1 1 . . “ .

The sum 1!9!+3!7!+“'+7!3!+9!1! can be written in the form Y .Findaand b

(a) Using binomial theorem show that 1% + 2% + 3% + 4% + 5% is divisible by 5
(Regional Mathematical Olympiad, Orissa — 1987)

(b) Using the same procedure show that 1% +2% + 3% + 4% + 5% is also divisible by 3 so that
it is actually divisible by 15.



CHAPTER-10

Sequences and Series

In a conflict between the heart and the brain follow your heart.

- Swami Vivekananda
10.1 Introduction (Sequence and Series)
We come across the phrase 'one after another' on a variety of occasions. The days in a week,
the months and seasons in a year, the festivals we observe all come oen after another.
Their occurrence one after another chains them in an order relation. We also fondly cherish
such a chain of order in our minds, that is owned by none, yet belongs to all - the ordering of our
counting numbers (up to a certain length ofcourse !) which we learn almost simultaneously with our

mother tongue from the good old days of our forgotten infancy :

* w4 Y J 2lerdal l dol
QOm 6QaM Q| (0]
Aal) dee XRUee (03]
aRlaR 9 ot QEERS|
QB Sl QR Q9
* @ 99, 9 e, GR0R6|, * One, two, buckle my shoe;
PR Qlam, d ean, 82 90!, Three, four, open the door;
e «e, 20 e, Five, six, pick up the stick;
QR L, Q9 RIS, Seven, eight, lay them straight;
IR R, QR QTR Nine, ten, a good fat hen;
60Q AR, 0 ORI Eleven, twelve, dig and delve;
IR el, 68IR 6!, Thirteen, fourteen, maids a-counting;
deQ IR, 0 SlIf, Fifteen, sixteen, maids in the kitchen;
Q68R4 6 2R gL, Seventeen, eighteen, maids a-waiting;
6RIG gaml, Nineteen, twenty, my plate’s empty !
TG Qletq K2l QAR | (S8R 6QIR) (Number-Rhyme)

The set of counting numbers N={1,2.3,...} is one of the foremost inventions of the human
brain. This set is associated with entities of our thought or perception which occur in order so
keenly that we go on to define :

Definitions :
Sequence :
A sequence is a function whose domain is N.

[It may be observed that a function whose domain is N* = {0,1,2,...} is also a sequence]
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Real Sequence :

If the range of a sequence is a subset of R, it is a real sequence.

Terms of a Sequence :

The functional values f{n) of a sequence /' : N — R are called the terms of the sequence.

Finite and Infinite Sequences :
A sequence with finite numbers of terms is called a finite sequence, otherwise it is called
infinite seqence.

Example -1: /: N — R such that :

@ f)=2n+3 i) ()= (1)

1
@ =0 (V) /()= (n-12

are examples of real sequences.

Recall that a sequence f is usually denoted in either of the forms {tn}:—l

or simply as (t ) or {t }; where f(n) =t

t 1s called the n™ term of the sequence. Accordingly t t,... are termed as 1st, 2nd, 3rd... n®

12 2’ 3°
terms of this sequence.

Series : A formal expression of the type
t++t+ o Ll W S (or its abbreviation Y’ t; )

where t_1s the nth term of a sequence, 1s called a series. If the number of terms is finite, then it

1s called a fimte series and if the number of terms 1s mfimte, it 1s called an mnfinite series.
o 0]

[It is customary to indicate an infinite series as ng ltn or Yty

For a given n €N an expression like Z tk =t +t,+t,+... + t,, is meanigful because we

can alwaye add finitely many real numbers.

o]
But , an expression like Ztn =ttt +t+... which involves addition of infinitely many
n=1

real numbers, is nothing more than a symbol unless we clarify what it means to find the

sum of infinitely many real numbers. To do so, we proceed through the following definitions:

Definition ( Partial sums of an infinite Series) :

0
For an mfinite Series ngltn a sum Sn— Z tk 1s called the n® partial sum

of the series ; forn=1,2,3

Thus S =t,S,=t +t,, S, =t +t+t andsoon.
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o0

Consequently, given a sequence (t )., , we obtain another related sequence (S, )7, which is

n=1
e 0]
the sequence of n partial sums of the infinite series gltn

Definition (Sum of an infinite series) :

Let (S,) be the sequence of partial sums of an infinite series > t . (S)) is convergent,

if there exists s € R, such that LHE)QO Sn =s. If(S,) is convergent, then >t _ is said to be

convergent and s is called its sum. Thus >t is convergent, if the sequence (S,) of

partial sums is convergent.

lim

If (S,) does not converge, i.e. |

Sh does not exist, then the series Ztu is called a

divergent series, and we say > t  diverges.

Let us now examine the infinite series corresponding to the sequences given in examples below,
in the light of the above definition.

(i) t =2n+3

n
2k+3)=2 X k+3n=n(n+1) +3n =n*t4dn 5  asnN— o
1 k=1

w2
I
Mz
-
o
1
-
| ™Me

n 1
[It will be proved in the next section that ¥k =3 n(n+1)]
k=1

0

This proves that 2 g2n+3) diverges.
n=

[Note that ' there exists s €R ' always means a definite real number s. The phrase 'S — o' means that

there is no bound to the largeness of S . Given any number k however large, we can find an appropriate n,
€N such that S >k , whenver n>n |
1 1 1

@ LT Ym+D) n n+l
n n
11 111 1o
— s = - L U PN SV O O S
nT X T2 Gty D n+l
k=1 k=1
=1- ! —1
= — as n — oo
1 . . -
il B2 covergent series having sum = 1.

So we can write :
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(1) t, =10
LS =l-1+1-1+ .. +(-1)"'=0, ifnis even and 1 if n is odd.

Lim

So, NS S, does not exist.

Hence (S,) does not converge and hence s’ (_1)n+1 is a divergent series, (since the value of
(S,) oscillates between 0 and 1). The series 1-1+1-1 - .. is called an oscillatory series.
(iv) For t =(2n-1) 2, the corresponding infinite series is ,
1 N 3 N 5
S T T T

It can be shown that the sum of this infinite series is 3. We defer the discussion until introduction
of arithmetico-geometric series.
In the next section we expose the reader to the skill and ingenuity regarding determination of sum

of an infinite series in the context of the well known progressions and some related series.

10.2.  Arithmetic Progression (A.P.) and Arithmetic Mean (A.M.)

Ift, -t =d(constant) ,forn=1,2,3, ...... , then (t ) is called an arithmetic sequence

or an Arithmetic Progression (A.P.) and the series > t_is called an Arithmetic Series.

The constant d is known as the comon difference (c.d.) which may be positive or negative.
Partial sums of an Arithmetic, series :

If > t, is an Arithmetic series , then by definition t, - t, =t,-t, =t -t,= ...t -t .

=t -t =1t-t

n-1 n-2 n -1
:>t1+tn:t2+tn-1:t3+tn-2: """ :tk+tn-k+l’
(fork=1,2, ... 5 1) (1

Writing S =t +t, +t, + ... S N S

andalsoS =t +t +t +_ _ +t+t+t,

1
We get S = 5 [t +t)+(E+t )+ (t+t )+ . + (1, + t)]
n
=5 (t,+t) [By (D)]
Thus, if t = a and common difference = d, then t = a + (n-1) d, so that

n n
S= ) [2a+(n-1)d] | which is same as SHZE

(a+1)|, where a = first term t, and / = last term
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a+(n-1)d of the finite series a+(a+d)+(a+2d)+...+a+(n-1)d.

Lim

Therefore 0 —> 0

S, = o Or - oo according as d >0 or d < 0.

Ifd=0, S =na — o Or- o« accordingasa>0ora<0.

This shows that an arithmetic series always diverges, except the special case when t = 0= d.

In this case t = 0 for all n so that sum of the corresponding arithmetic series is zero.
N.B. : Sum of first n counting numbers :

Taking @ = 1, d= 1 m the AP.(a ) we get

n(n+1)
1+2+.. .+ n= T

Example- 2

=0

m+n

Inan A.P,t =nandt =m, m# n. Prove that t
Solution :
Taking Ist term = a, c.d.= d

tm =n = a+(m-1) d=n

t =m = a+(n-1)d=m } = (m-n)d=n-m=d=-1
at(m-1)d = n = a=n-(m-1)d = n+m-1

t,., = at(min-1)d = ntm-1- (mtn-1) =0

m+.

Example- 3

Find an A.P, sum of whose first n term is n2.
Solution :

Sn= L+ttt +t= Sn_1+ t

=t =8-8 =n- (1)} =2n-l

. The AP. 1s given by (t ) = where t = 2n-1

or explicitly 1, 3, 5, 7, ..., the sequence of odd natural numbers.
Example- 4

LetS ,t and S!, t denote respectively sum of first n terms and the n™ term of two arithmetic

progressions,

n t

—— , find -
n+l

t,

. Sn
Given, S'n
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Solution :

Taking a, a’ and d, d' respectively as first terms and c.d’s

S, 2{2a+m-Dd} 2a+m-Dd n )
o = = = (given)
S, 52a+(n-Dd'} 2a+(n—-1d" n+l

f, a+6d 2a+12d 13
f, a+6d' 2a'+12d' 14

Now

(Putting) n = 13).
Arithmetic Mean (A.M.)

When three numbers a, m and b are in A.P, then m is average of a and b.

This may be seen as follows :

Taking d as common difference m = a+d, b = a+2d.

Thus a;—b = a+(a2+2d) =a+d = m.

In general if a, a,, ..., a_are in A.P., their arithmetic mean A.M. is defined as

AM. = w = _Zak

N g

N.B. The terms a,, a, ..., a_, are called the arithmetic means between a, and a .

Insertion of A.M’s between given numbers :
Example - 5
Insert n number of A.M’s between a, beR. Let the AM’s bem, m,, ... m .

Thena,m,m,. .. m,barein AP

Taking d as common difference

m, =atd, m,=at2d, .., m =atnd, b= atmn+tl)d
b-a ) _
sd= which gives
n+1
b—a Ab—a b-a
m =at ,m, = ai ( ), "=a+n( )_
! n+l ? n+l n+l
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10.3  Geometric Progression (GP.) and Geometric Mean (GM.)

If t’7_+1= » (constant), for n = 1, 2, 3, ...... , then (t) is called a geometric sequence or

n

0
geometric progression (G.P), and the series th n is called a geometric series.
n=

The constant r is known as the common ratio (c.r.).

Note. (1) If t, (first term) = @, common ratio =1, then t = a r*".

tu 1
(2) No term of a geometric sequence can be zero, for otherwise, ,[+ will be meaningless for the

n

corresponding value of n.

n'* partial sum of a geometric series :

For a geometric series with t = ¢ and common ratio =1,

S, =t+t+t+...+t +t=a+ar+ar*t. . +ar'+ ar™!
SIS =ar+art+ + ar™!' + ar*

= (subtracting) (1-r) S = a(1-r")

a(l-r")
or |S, = —forr=1.
—r

If r=1, then t =a, for every n, so that S = na.
Sum of a gemetric series :

If |1“ <1,1e-1, <r<l1 then r*— 0 when n— oo. So for the geometric series with |1“ <1

Lim Lim 1-r" a

we have § = a .
n—>o N n—> 1-7 1—-7r

a

1-r~

X an-1 .
Therefore Zlm‘ = ff‘f" <1
Hn=

2 n-l
and Elw' diverges if | r| > 1.
Hn=

0
: : n—l1 : : :
Hence the geometric series Zi”’ converges if |r| < 1 and diverges if |r| > L.
n=

Gemetric Mean :

If three terms a, m and b form a G.P. then m is said to be the Geometric Mean (G.M.) of
a and b.
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m .
Here, — = — = I' (common ratio)
m

>m=ab =m=z 4

m? = ab = ab is always positive.

Therefore Geometric Mean between a and b is y/ab or -+ ab .
Geometric Mean of n terms in G.P.
Ifa,, a,, ... a, are npositive numbers in G.P. then their geometric mean 1s defined as :

1
GM. = (a,a,. ..a,)"=4/a,qa,..a, .

N.B. : The terms a,, a,, . . . , a_, are called geometric means between a, and a .

Example- 6

Insert three geometric means between — and 128.

2

Solution :
Suppose GM’s to be inserted are g, g,, and g,

1 .
= E,gl,gz,g3,128 are in GP.

Taking r as common ratio, 128 = Er“

= =25 = r=4or-4
. 1 1
Takingr=4,g = E><r=2,g2= Er2=8, g.=
Takingr=-4,g=-2,g=8,g.=-32
So, the inserted G.M’s are either 2, 8, 32 or -2, 8, -32.
Example- 7
Find 3 +33+333+... up to the n™ term

Solution :

3
S, = —[9+99+999+. . +n™term]|

[(10-1)+(102-1)+(10%-1)+...+(107-1)]

[T0(1+10+10%+...+10*")-n]

W~ W]~

-1 10
To_p M=5700-h-3

= Z[10x

|-
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10.4 Harmonic Progression (H.P.) & Harmonic Mean (H.M.)

Anumber of terms @, , a,, ..., a, are said to be in harmonic progression (ELP.) if their reciprocals
I 1

—, —, ..— arecin A.P.

a, d, a,

Harmonic Mean (H.M.): If a,, a,,
given by :

1 1[1 1 1
—_— | —t—+ ..+t —
H n\la a, a, )’

n

..., a_are in H.P. then their harmonic mean (H.M.) H is

This means that reciprocal of harmonic mean is arithmetic mean of the reciprocals.
Example - 8

2ac
If a, b, ¢ are in harmonic progression, prove that b = a_-l-c
Solution :
_ 1 1 1 _ 1 1 1 1
Obviously — > — >, — are in A.P. therefore — — — = — — —
a b ¢ b a ¢ b
2 1 1 a+c
- ==—+-=
b a c¢ ac
2ac
Therefore b = .
a+c

Example- 9
1 1 1
If a,b # 0 and H is the harmonic mean between them, then — , E > g
a
1 _ 1( 1 + 1 _ a+b
"H 2la b/ 2ab

2ab
a+b’

are in A.P.

= H=

Relation between A.M., GM. and H.M.

If a and b are two positive numbers then their Airthmetic Mean ‘A’, Geometric Mean ‘G’ and
Harmonic Mean ‘H’ are given by

A a+b’ G = Jab and 1 = 2ab
2 a+b
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N.B.

10.5

+b
ThenAG—T— b——(a+b 25)——(\/_ Jb)? >0

“A>2G

2ab
also G-H = \/_— c ‘/_

a+b

o () 0

~G>H
Combining the two inequalities, we have
A>G>H.

This relation between A.M., GM. and H.M. can be generalised to n numbers, which is
stated without proof :

If A, G, H are respectively arithmetic, geometric and harmonic mean of @, , a,, ... a,
then A > G 2 H.
Arithmetico-geometric Series :

If (a, 1s an arithmetic sequence and (b ) 1s a geometric sequence, then (a, b ) is known as an

Arithmetico - geometric sequence. Accordingly 3 a b 1is called an arithmetico-geometric series.

w —
@ Y 2n-1)27 1
n=1
1 é+5+7+
(11) 1R

(i) 1+ 3x+5x+7¢+ ...

are examples of arithmetico-geometric series.

Partial Sums

For an arithmetico - geometric series > a b,

taking a = a,a, =a+(n-1)dandb=b, b =br™!,

[where d and r are respectively common difference and common ratio corresponding to the
arithmetic series > a_and the geometric series >.b |, we have,

a, b, = {a+(k-1)d} br*'=abr*'+db(k-1)r*!

n
- Sn = k;] Clkbk = ab (1+ T+ r2+ """ rn-? + rn-l)

+db {r+2r2+3r°+.....+0-2)r"? +(n-1)r*'}
1S =ab (r+r’+ .. + 1)
+db{ r?+ 2%+ ... + (n-2) i+ (n-1) '}
= (Subtracting) (1-r) S = ab (1-1") + db {r+r*+r’+ ... + 1! - (n-1) i}
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n—-1

1-1 N
=gab (1-1*) + db {r. -1 (n-1) r }[By the formula for n® partical sum of a geometric

series|

T " n n
=ab (1-1*) + db (: - or +T)

n

—r T ™ N ™ nr"
= §=ab o T T T T T T 1

Sum of an arithmetico-geometric series :

For the above series we derive expression for its sum by assuming ‘r| < 1, for which the series
% n
' converges.
n=0

For |r| <1, * — 0 and nor* — 0 when n approaches infinity. (For the latter limit see the note (2)
that follows.) Therefore

Lim ab dbr
S +

n—)OO n 1—}" (l_r)z

Thus we have,

a dr
ab + (atd) br+ (at2d) b’ + (@+3d) b + ... b L_}.’f—(l )2} for [r| < 1.
- Fr

Note (1) In solving problems involving arithmetico-geometric series it is aften advisable to proceed from

first principles, rather than memorizing the above formulae. (See worked out example-8)
Lim
Q) Proof that _  _ nr'=0 for | <1

1
0< i<l = Fe

[Since no term of a geometric series is zero, there is no possiblity that r = 0]

1
n . —_
‘nrn‘ =n ]1"|rl = o ; taking b = ‘r|

Asb>1,Wecantakeb=1 + a; a > 0 so that

-1
n(n-1) o

be= (lay = Lrma+ ———a ...

+ ¢* (by binomial expansion)
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2 n
=" > >

0 )
:takingn > 1

Taking limits as n approaches infinity and applying Sandwitch theorem we get

Lim n Lim
= a ™ =0
n—w bn n— o

Lim
. n_)Oonr“=0f0r ‘r| <1.
Lim Lim
[try to prove : n—sco %nl = 0= neso % 0. Begin from definition of limyjit at infimity.

Observe that the implication is not true for a nozero limit in LHS, e.g. x = (-1)"].

10.6  Applications (worked out examples on Sequences and Series) :

[Star marked examples are not to be set in examination]|

Example 10 : For an arithmetic sequence if S =S _(m =n) then prove that S _, = 0.

Solution :
Taking first term = a, common difference = d
m n
5,=8, =7 [2a+(m-1)d] = 5 [2a+(r-1d]
= 2am+ m (m-1) d= 2an + n(n-1)d
= 2a (m-n) +d (m?- m - n?>+n) =0
=2a (m-n) +d (m-n) (m+n-1) =0

= 2a+ (mtn-1)d=0 (- m=z=n)

m+n
=8 .= 5 {2a+ (m+n-1)d} =0

Example - 11 :For an arithmetic seris Xt if,

2
Sm _ m t 2m-1

— = — (m#n) m =
S 02 , then prove that t -1

n

Solution : Taking t, = a, common difference = d
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%)

m
. m2 E{Za.' + (m—1)d} mz
S 2= =7
S n

n hn 5{2a+(n—l)d} n

2a+(m-1)d _m
2a+(n-1)d n

=2 +n(m-1)d= 2agm+ mn-1)d
=>dm-n=2a(m-n) = d=2a

Ctm a+(m-1)d _ at2am=1)  2m-1

1, a+(n—-1d a+2a(n—-1) 2n—-1

S
[Here a = 0, for otherwise, d=0and S _=S =0 and S_m will be meaningless, contrary to hypothesis]
n

1 1 1
- . 1 5 + + + .
Example - 12 : Sum the series 1+ dx 1— 1y T up to n terms.

1 1
. . t = , b, = A, =
Solution : Here Y e’ 2 1=x"37 1=y

- +1+
SR S SN EV: S I S Y

3 I1+4/x 1-+/x 1-x 1-x 2

ot

1

1
Therefore the given series is an arithmetic series with first term a = W and common

difference

11 x
I-x 1+4/x 1-

d=

Sum upto n terms is, § = % [2a+(n-1)d]

_n f
2 1+J_

[2+(n %)J_]

2(1
Example-13 (Method of Differences) :

If we can express t_in the fromt =u -u  ort =u -u, then obtaming partial sums, S of the
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series Ztn becomes fairly easy.

n n
i = >t =3 U, -u,_q)
In this case S| 1E1 k &1 k™ Yk=1

=u -u,tu-uto +tu-u  =u-u
Similarly if t =u_-u ,them S =u -u .
The skill of writing t_as a difference 1s illustrated through a variety of examples :
Example - 14 :

Sum upto n terms and obtain the sum of the series , if it is covergent :

@ 1.35+3.5.7+57.9+.....

ii ! LI S
@ 1357357 579

Soultion :
(1) t =(2n-1) 2n+1) (2n+3)
[observe that t 1s a product 3 successive terms of an A.P, begining with 2n-1]
1
= 3 (2n-1) 2n+1) 2n+3) {(2n+5) - (2n-3)}

[Multiply and divide by the difference of the factors following 2n+3 and preceeding 2n-1]

1 1
3 @n-D) @ntD) @n3) ir+S) - = (20-3) @n-1) 2ot 1) (203)

n n-1 2

1
=u -u ;whereu = r (2n-1) (2n+1) (2n+3) (2n+5).

LS =u -u =
o

n n

(2n-1) 2n+1) (20+3) (20+5) - % 1) (1) 3) (5)

| —
o0 | —

o [@n-D) @n+1) 20+3) @n5)+15].

Here S, — w0 asn — o0, S0 the series is not convergent.
N.B. The above method applies when t can be first expresed as a product of a number of successive
terms of an A.P.

_ 1
b= 2n-1) 2n+1) 2n+3)

(1)

[observe that t  is the reciprocal of the product of 3 sucessive terms of an A P]
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_ (@n+3) - (n-1)
T 4(2n—1) (2n+1) (2n+3)

[multiply and divide by the difference of the last and first factors in the denominator. |

1 1 1 1
1 o= =u_ o -u_;
4 (2n-1)(2n+1) 4 @n+lH(@n+3) n-1 'n

1
whereu,= 5" o011 @n+3)

1 1

=u u_=
1 N 413  4Q2n+1)(2n+3)

Here Sn - I asn — o, so the series 2.t is convergent.

1 1 1 1

g + + +
1.3.5 357 579 12

[This method 1s applieable when t_1s the reciprocal of the product of a number of successive terms of an

A.P]

1 (@+D(n+2)
» T n(n+3) n@+D)@+2) @+3)

*x (i) ot
[First insert the missing factors so that the succession of the factors is in A.P]|

n? 3042 nn+3) +2

nn+1)(n+2) (n+3) B n(n+1)(n+2)(n+3)

1 2
- (n+1)(n+2) " n(n+1)(n+2)(n+3)

(Now processed as in the previous example)

B (n+2)—(n+1)+ 2{(n+3)—n}
T @m+D(@m+2) 3Jn(n+1) (n+2)(n+3)
1 2 1

2
Ty hmib@e2) 3 @iD @+ @)

1
T (@m+1) (n+2)

s 2 1 B L 1
[ n+1 3 nn+l)(n+2) n+2 3 (m+l)(n+2)(n+3)
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1 2 1

Sy wherew, = ST 3T i (n+2) (n+3)

- un-l

t,2 2 1
2 3 123 |n+2 3 @m+l@+2)(n+3)

Here S —>i+£ L—iasn—mo so >t s roent
ere on > "3 123 18 > ! p 1S convergen
1 1 | 11
+ + + .. = —
1.4 2.5 3.6 18

Example - 15 [Sum of the special series Dk, Dk and Y K]
k=1

k=1 k=1
Sum upto n terms the following series :
(1) 1+243+...+n
(i) 1P+22432+ ..+
(i) PP+2°433+...+1n’

Solution :

@) 1+2+43+ . . . + n[See Section 10.2 (sum of first n counting numbers) |

(ii) K- (k17 =K - (K - 3K + 3k-1) = 3k2- 3k + 1

Takingk=1,2,3, ...... ,nand adding

3_,3.2 n _ 32 3
n” =33k"-33k+n=33k"-=—n(m+1) +n
k=1 kzl k:l 2

It 1s now left to the reader to derive

1
12 +22 432+ ... n? = i n(n+1) (2n+1).
(iii) k' - (k-1)' =k' - (k'- 4l¢+ 6k?- 4k +1) = 4k*- 6K* + 4k -1

Takingk=1,2,3, ... ,nand adding

4 n 3 n 2 n
n =4 3k7-63Yk"+4>k-n
k=1 k=1 k=1
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n
_ 4 Zk3— 6. n(n+1) (2n+l)+ A. n(n+1) .
k=1 6 2

n
3
Now solve for kg lk and derive

n(n+1) T
2

Example - 16 :
Finding S~ for the series Ztn , where (t , -t ) is an arithmetic or a geometric sequence.

In this case we have

0=8 -85 =@+t +t ... t)-(t,+t,+ ... +t tt)
n—1
= L= (G- F )+ ) TLT k§1 (tk+1 B tk)

n-1
k§1 (txy1 —ty), being the sumofn- 1 terms in AP or G P, we can obtain t_in terms of n..,

n
whereafter we can find kg ltk in the usual way.

As an illustration, consider the following series :
8+11 +20+47+....
Observe that the difference of the terms, i.e
11 - 8, 20-11, 47-20, ...... formthe GP 3, 32,33 ...
So we apply the above technique.
0=S -8 =8+11+20+47+. ... +t
-{8+11+20+...+t } -t
(Note the style of writing S - S . This 1s for sake of our convenience.)
= 8+ (11-8) + (20-11) +(47-20) + ...+ (t-t ) -t

St =84+ {34335 (-t )}
Since the bracketed expression is a sum upto n-1 terms of the GP. 3, 32,33,

(¢ -t ) is 3
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(You can be otherwise sure that the terms in the bracket correspond to the terms 11, 20, 47, ......
t of the series of nterms : 8 + 11 +20+47 + ... t, So their number must be n-1)

n-1
oL =84 (333 3 = 8+3.?
1 n 3" 13
=8+—-3" -3)=—"+—
2 2 2
(You may put n=1, 2, 3, ...... and check whether you obtain the terms of the given series : 8

+11+20+47 + ... )

Therefore sum upto n terms of the given series is given by

n n
G- $o -t b
n kzl 2 k:l 2
331 13n 3 4 13n
= — _l) -

Example - 17 : (Arithmetico-geometric series)

Find S and hence sum the infinite series if it is convergent.

0 0

@ 2 (n-127" @ D.(n+D2"

n=1 n=1

Solution :

@ s =2 Qk-D2™

1 1 3 2n-3 2n-1
—S = —+—+...... + +
2 n 22 23 o 2n+1
(b= Lel33, L @ab-Cey nl
2’n 2, 23 oM 2n+1
_ 1”(;; LJ 2n-1
22 23 yn 2n+1
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1
1 1 on-1 2n-1
EEAEE I oo+l
2 2 -+ on
1 1 n 1
— _+1 _ —
3001 n 1

Sn=3' 12_ n1 1
pt—2 Hh-1 Hh

Lim _

n—ow n

So the series is convergent and
> @n-12"=3
n=l

n

(ii) S = D k+D2" 23245224723+ +2n-1)2" + (20 + 120

k=1
28 =322+ 520+ .+ (20-1)2" + 2n+1)2!
— =S =32+2224225+ 227~ (2n+]) 20!

— 6+ .23 + 24 + . + 2n+1 - (2n+1) 2n+1

n-1

L 2Mel -
= 642% T - (Qntl) 2= 64200 - 2 (e 2

0S5, =2 202 =2 2n-1) +2 > o n > @
So the given series is not convergent.
Example - 18 :
(Series reducible to arithmetico-geometric series)
Find the sum upto infinity, assuming that the series 1 + 3x + 6x>+10x> +......

has a sum for |X‘ <1.

Solution : LetS=14+3x+6x2+10x°* + ...

= xS=x+3x2+6xX°+ ...
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, which is an arithmetic - geometric series.

S (AW)S =1+ 20+ 32+ A+

(I-x)xS=x+2x2+3x + ...

o (1) S-(1-x) xS = (1-x)? S = 1+ x+ x>+ ¥+ ... -

[Geometric series with common ratio x, satisfying |x’ <1]

1
S SE 0%y

Example - 19 (Application of geometic series) :
. . p
Express the recurring decimal 0.142857 in the form E :P.q e.N.

Solution :-

0.142857 =0. 142857 142857 142857 ......
=0. 142857 + 0. 000000 142857 + 0. 000000 000000 142857 +

142857 142857 142857

_ + +
10 1012 0!8

142857 1 142857 142857
1 109-1 999999

= 109 1.

100

~3 | =

and see how its digits permute in the

[N.B. (1) 142857 is an interesting number. Calculate 777

recurring block. If you bring 1 to the right, it becomes 3 times. |

EXERCISES - 10 (a)

(Starred exercises are not to be set in the examintion)

Which of the following is a sequence ?

(1) fx)=[x],x €e R

,X e R

(i) fx)=[x
(i) f(m=3/r,neN
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2. Determine whether (t) is an arithmetic sequence if :
(i) t,=an’+bn
(i) t=an+b
(i) t =an’+b
3. If a geometric series converges, which of the following is true about its common ratio r ?
1 r>1
(m r>0
() -l<r<l
(v) r<-1
4. If an arithmetic series Ztn converges, which of the following is true about t ?
©»m t <l
@ 1t 1<1
@ t =0
(av) t —0
5. Which of the following is an arithmetico - geometric series ?
H 1+3x+7x+15x+......
.. Lo 1,
+ =x"+=x"+..
() x+75 3
() x+(1+2) x>+ (1+2+3)x* + ...
(iv) xX+3x*2+5x°+7x+ ...
6. For an arithmetic sequence (t),
t=q and t.=p. (p=q). Find t_
7. For an arithmetic series 2a_ ,
Sq=qandSq=p, (p¢q)FindSp+q,
8. The sum of a geometric series is 3. The series of squares of its terms has sum 18. Find the
series.
9. The sum of a geometric series is 14 and the series of cubes of its terms has sum 392. Find the
series.
10. Find the sum as directed :

1) 1+2a+3a*+4a® +...... (firstnterms (a# 1)
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() 1+ (1+x)y + (1+x+xD)y? + (1+x+x24x7) y* + ... (to infinity),
assuming that this series has a sum for |y| < 1.

(lll) 1+g + E + E + @ + (tomfmlty)

(1v)  1+4x+8x2+ 133+ 19x+.... (to infinity) ;

assuming that the series has a sum, for |x’ <1.

(V) 32+4522+723+ ... ( first n terms)

11. Find the sum of the infinitie series :
N T D S
W 127237327
) [ SR S
W 123 " 234 345 7
i L, t .t
w  235¢ 7 3811 siL4
_ 3 5 7
(v) 122 + 72 32 +32'42 """
41 (+1)% —n2
Hint : take t = =
[ " nZm+1)? nZ(n+1)° ]
] ] ]
V) — f — + — + ..

1.5 3.7 5.9

1 _ 2n+1
(2n-1)(2n +3)  (2n—1)(2n+1) (2n+3)

[Hint : Take ¢, =

- -1 +2 _ 1 N 2
T @2n-1)@n+1)(2n+3)  (n+1)(2n+3) @n-1)(2n+1) 2n+3)

and apply the method of differences.

12. Find S _ for the series :
1O 12+23+34+ ...
() 123+234+345+ ...
(i) 258+5811+811.14+ ..

(iv) 123.4+2345+3456+.....
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[Hint :t = (3n- 1) 3n+2) 3n+5) |
v) 15+26+37+ ...
[Hint : t = n (n+4) is not a product of two successive terms of an A.P. for, the term following n
should be n+1, not n+4. So method of previous exercises is not applicable. In stead, write t = n’
n 2 n
+4nand find S = IE%( +4 IE%( applying formulae. |
(vi) 23+3.060+4.11 +.....
[Hint : Take t = (n+1 (n*+2) |
(vi) 1.32+2.52+3.72+ ..
13. Find the sum of first n terms of the series :
i S5+6+8+12+20+ ...
(i) 4+5+8+13+20+ ...
14. Find the sum of the products of 1,2, 3 ....., 20 taken two at a time.
| [ 20 JZ 2 ,
o - _ = k| - Xk
Hint : Required sum = 2
[Hint : Required sum = o Ko Ko
(i) Dothesameforl,3,5,7,..... , 19
15. Ifa=1+x+x>x3+ ... and b = 1+y+y*+y3+...; ‘x‘ <1 and ‘y| <1, then prove that
1 + Xy + X2y2+x3y3_|_ ...... = ab
a+b -1
16. If a, b, ¢ are respectively the p®, g, ™ terms of an A_P., then prove that
a(q-r)+b(r-p)+efp-q) = 0
1 11 _ b+c c+a a+b _
17. If —» —.— arein A.P, and a+bh+c = 0, prove that s > are in A.P.
a c a b c
: 1 1 .
18. If a?, b°, ¢? are in A.P., prove that ) 5 are in A.P.
b+c c+a a+b
b+c c+a a+b _ I 11 _ _
19. It > > are in A.P., prove that —, ——.— arein A.P,, given a+b+c # 0
a b c a b c
_ 1 1 1 _
20. If (b-c)?, (c-a)*, (a-b)*are in A.P., prove that > ) are in A.P.
b—c c¢c—a a-b
21. If a, b, ¢ are respectively the sums of p, q, r terms of an A.P, prove that
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% g+ =P+ Epg)=0
22. Ifa, b, ¢, d are in GP., prove that

(@*+b*+c?) (b*+c*+d?) = (ab+beted)?
10.7 Binomial, Exponential and Logarithmic series :
Binomial series :

We know from binomial theorem for positive integral index n, that

n(n—-1) JE nn—1H(n-2) [ n(n—1)..21 "

(1+x)* = 1+nx+ 2 3 .- o 1)
The above expression (or expansion) of (1+x)" holds for any value of x.
We now state without proof that
Theorem (Binomial Theorem for a Real Index)
ala-1 ala-1)(a-2 ala-1)..(a—n+l) ,
(1+x)* = 1+0Lx+—( ) 2 4 &L X ) g 4 &L ):-:( ) yrg. Q)

2! 3! n!

Where oo € R, provided [x| <1.

(The proof is beyond the scope of the book)

The infinite series in (2) is known as the Binomial Series and it has the sum (1+x)* for [x| < 1.

Also observe that if oo =n € N, the binomial series in (2) becomes the finite series in (1) and has the sum
(1+x)* without any restriction on x.

Application of Binomial Series

Applying the binomial series, you can now prove that :

For [x| <1,

Ax)'=1+x+x*+x*+.... 3)
(Itx)?=1x+x2-X+ ... “4)
(I+x)? =1-2x +3x* - 43 + ... )
(1-x)? = 1+2x 3> + 4x* + ... 6)

Series Expansion of a Function :
If a series t,+t +t,+ ... has a finite sum 's' we say that the series is convergent and write.
S={ F L L+

If f(x) is the sum of a series, the series is said to be an expansion of f(x). As seen eartier,
THx+x2+x3+ .. 1s an expansion of (1-x)!. We now discuss expansions of exponential and
logarithmic functions.
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The Exponential Series : We know
lim ( 1)“
I+— | =e, neN.
n—c n

Now if x is any real number, by the Binomial Theorem for real index we get, for n > 1

20 42 31 3

1\ 1  nx(nx-1) 1 nx(nx-1) (ox-2) 1
T+— —l4nx .+ + Fons

n n

G- x@eD) (x-2)
n

=1+x+ n_ n, @)
21 31
. 1 nx 1al* .
Since (1+H) = (1+H) , taking limit as n — oo, in (8) we get
X X2 3
o=+ 2+ 24
1! 2! 3!
forxeR (8)

The series on the R.H.S is called the exponential series and also called the expansion of e*.

Now leta > 0 and b =log_ a, 1.¢ €* = a. Writing bx for x we have from (8)

2.2 2.3
ebX=1+bx+bX LS
3!
2.2 3,3
:>a"=(eb)"=eb"=1+bx+bX +—_b3)1( +

x2 (loge a)2 N x_3(10gC a)3 .

= a*=1+xloga +
) 2! 3!

The Logarithmic Series :

From (9) we have fora >0 andy € R

2 2 3 3
vy~ (log,a) LY (log,a) L
2! 3|

@ =1+yloga+

[We may also use 1 a for log a]

Now let a = 1+x > 0 so that x > -1. Then
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2
(14x) = 1+ y log, (1+x) + % dog,(1+x)%+ (10)

But futher restricting x so that x<1, i.e |x| < 1, we use (2) to obtain

y(yz,_ Ui s y(y—l;!(y—Z) S+ (11)

(I+xp = L+ yx o+

The R.H.S of (10) and (11) being identical, the two series in powers of y must have identical
coefficients of y, y? etc.

2 3

Coefticients of y on the R.H.S. of (11) is X -

Hence, equating coeflicients of y in (10) and (11), we have

2 3
+ = s
3

log, (I+x)= X -

X<1 (12)

The series on the R.H.S of (12) is called the logarithmic series and also called the expansion of
log, (1+x). It is known that (12) is valied for x =1 also.

x2 X3
Hence log, (1+x) = X - 5 + - l<x < lfor-1<x<1 a3)
mgx=1, log 2= 1 1 + ! l+
Puttingx =1, 0g, - s 3 - 40T (14)

Now writing - x for X in (12) we have

From (13) and (15) it easily follows that

3 5
Dloge(iﬂ()ZZ(x+X3+X5+ ...... L <1 (16)

—X

Example -20 Find the values of the following correct upto 3 places of decimal.

. 1 Lo
Do G 3
Solution : We have for x <« R
2 3

X X
e=l+x+—+ — +
2! 3!
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Takingx =- 1,

1 142 13 W4 RTe) 1,0
LG VN o VN o VM G R o L
¢ 2! 3! 41 5! 6!

2 6 24 120 720 5040
=0.5-0.1666+0.0416 - 0.0083 - .0001

1 1 1 1 1 1
+ +

=0.368
Taking x = —
aking x = =
MORCNONCNO]
o586 8 B )
3 o2 3 ITEET
111 1 1
—1--+ - + +

3 18 162 1944 29160
=1-0.3333+0.0555-0.0061 +0.0005

=0.717

Example 21 Prove that

23 33 43

1+ —+ —+— + ... =5¢
2! 3! 41

Solution : The nth term of the given series is

3 2

L (n-1) (n-2) + 3n -2
a0 (n-1)!
1 3@D+1
T (n-3)! (01!
1 3 1

— + +
(n-3)!  (m-2)! (n-1)!
Takingn=3,4, 5,
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¢ 1 3 N 1
A TR TR Y
1 3
t5 - —+ — + —
20 31 41
Adding column wise
1 1 1 1 1
t3+t4+t5+ ______ = (1+ i+5+)+3(ﬂ+ 2|+§ )
+(i+ i+i+ ...... )
20 31 41

=e +3(e-1)+ (el - %)

=e+3e-3+e-2=5e-5

Hence the given series =t +t, + 1 + ...

53
=1+ S (Se-5)=Se

Example 22 : Sum the series

16 27 42
+ -+ =+

9+ —+ 4+ 22
200 31 4

Solution : Observe first the differences of numerators of consecutive terms are in A.P. . Let t denote the
nth term of the numerators.

LetS=9+16+27+42+ ..t
Alsowrite S=9+16+27+ ... +t,, +t
Subtracting

0=9+7+11+15+ ... ton terms -

or,t =9+ (7 +11+15+ ... to n-1 terms)

(n-1)
2

or,t =9+ {27+ n-24}=2"+n+6.

-. The nth term of the given series

;o= th _ 2nfsne6

n n! n!
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_ 2n(n-1)+3n+6

n!

2 3 6
+ + =

T m=2)! (=1)!
Taking n=2, 3,4,

Adding column wise

®© 1 1 1 1 |
Ty =2 (14— + — + y+3(— + — + — +
n=2 1! 2! 1! 2! 3! 2! 3!

1
=2e+3(e-1)+ 6 (e-1 - F)

=2e+3e-3+6e-12= 1le-15.
Hence sum of the given series

[e0]
2Ty =9+ (11e-15)=1le-6.
n=I

* Example 23 : Find the cuefficient of x* in the expansion of
@A (1-ax+x2)/ e

(i) log, (1 - x+x?), x| <1
Solution :
] 1-ax+x2
) ——— =(1-ax+x}e*
ex
2 3 n_n
=(1-ax+x) (1-x+ N A

o 3 o

...... )+6(l+i+

1
— +
41
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Hence the coefficient of x®

_ (—1)” a (_Drt—l ﬁ (_l)n—2
n! (n=1)! (n=2)!
-n"

= [1+ean+n(@n-1)]

3
(i) log, (1-x+x)= log_ (l:‘ }
X

= log, (1+x%) - log_(1+X)

6 9 3r
=JX3_x_+x__ ...... + et A,
[ 2 3
2 3 T
x4 2 ettt E
2 3
(—l)ﬁL]

If n is a mulfiple of 3, 3r (say), then the coetficient of x* is from the first series on the

r

) (_1)3r+1

right and from the second series. Hence the coefficient is

3r

(_1)r+1 ] (_1)3r+1 _ -1)f
r 3r

[-1)- 3 - -1)*]

26 _ 23

3r n

If r is not a multiple of 3 then x* doesnot occur in the first series and hence the required coefficient
(D
s ——.

n
When working with series one should observe carefully the terms of the series. Look at the
following example.

6
Example 24 : If ]x‘ <landy =-x3- X? - - then prove that x> =1 - .

342
Solution : =(x3 -& B
y=(x) 5 3
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= log, (1-x%)

sead=]l-¥*=x=1-¢

* Example 25 : If ‘x‘ < 1, prove that

3 4 6
+x X] = + + +....
log, [(I*+x)™ (I-0™] =2 [1.2 34 56 J

Solution :
L.H.S. = (1+x) log_ (1+x) + (1-x) log_ (1-x)
= log, (1+x) + x log (1+x) + log, (1-x) - x log_(1-x)
= [log, (1+x) +log_ (1-x)] + x [log, (1+x) - log, (I-X)]  ....cccoceee. i

Now

g (I =x. 5 + 2 X
0 X)=x-— + — - — +.....
S 2 3 4
¥ x X
d 1 l-x)=-x-— - — - —+..__
and log (1-x)=-x 5 3 1

XZ X4 6
= log, (1+x)+ log, (1-x)=-2 {7 ST e e }

X’ x’
and log_ (1 +x)-log (1-x)=2. {XJr — + ?Jr ......

Substitution in (1) gives
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EXERCISE - 10 (b)

[Starred problems are not to be set in the examination.]

Assume ‘x‘ < 1 whenever required

Expand in ascending powers of x

Qo 2

| .
* (1) Cos x [Hint : Write cos x = 5 (e™+ e™) and assume :

z .
=1+ -+ —+ — + ... when z is complex|

(i) Sinx
(v) (xe™-e¥)/e*

*x (V) eeX upto the term containing x*

2 3
[Hint : write _eX = e.e’ where y = x+ — + X4
S 21 3!
2 3 2 3 4
Ifx=y+y— + L showthaty=x-x—+X—JFX—Jr ------
21 3! 2 3 4
: , L, o b4 41 6 6
Find the value of x —y+2' x -y)+ 3 x -y) + ...
Show that
(123, 1
@) 3 s o T e
9 19 35 57 85 -
(ii) — 4+ — 4+ = 4+ =+ =+ =12e5
1! 2! 31 41 5!
1+3  1+3+32 1 3
1+ + +.. = — (e” -e
(w) 21 31 ;-9
L1324 35 a6
(1v) T o) 3 ar e e
1 1.3 135 (]]U
vy — *t - + — + = e [Hint: t = 2

1.2 1.23.4 1.2.3.4.5.6 ol
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* 5.

Prove that

(1)

(1)

(1ii)

(iv)

™)

(Vi)

loge m - logen =

loge (1+3x+2x2) = 3x - %xz + 2){3 - £x4 + . ‘x| < %
3 5
loge (n+1) - loga(m-1) = 2| & + 3—3 + a—s +o
n 3n 5n
1 1 1
loge m+1) - logen = 2 3 + 5 + ...
2+l 302n+1)  5@2n+1)
2
m-n l(m-n] 1 (m-n)
— + — + ... ,m,n >0
m 20 m 3\ m
a-b l(a—bf 1 (a—b)s
+ = + — + ... a>b.
atb 3 \a+b 5 \a+b

loge a - logeb = 2[

loge n =

n-1 1 n*-1

T3 2
n+l 2 (n+1)

1 n®-1

3 (n+1)




