(CHAPTER 11)

Straight Lines

Some persons have contended that mathematics ought to be taught by making the
illustrations obvious to the senses. Nothing can be more absurd or injurious; it ought to be
our never-ceasing effort to make people think, not feel.

- Coleridge
11.0 Introduction :

Application of algebra to study the geometrical figures in plane was first initiated by
the French mathematician Rene - Descartes (1596 - 1665). In 1619, Descartes announced
that by using algebra to study the geometry of plane figures, he had discovered an entirely
new science which would help to solve all the problems of geometry. This new science he
named as Analytical Geometry. Since then, the subject of Analytic Geometry has been an
important and powerful tool for both physicists and the mathematicians as well.

11.1 Fundamental Concepts

The fundamental concepts of plane geometry which form a basis of introduction of coordinate
geometry have been presented in article 4.01 of chapter-4. The reader is also advised to go
through the rectangular Cartesian Co-ordinate System from article 4.1 ofthat chapter.

The essence of co-ordinate geometry is the interpretation of a geometrical phenomenon in
terms of algebra. Consequently, a question on geometry turns out to be a question involving
certain algebraic equations.

After going through the introduction of the Cartesian coordinates, one can easily no-
tice that the set of points on the co-ordinate plane can be taken as the Cartesian product R
x R where R is the set of real numbers. The geometry that is based on co-ordinates of
points on a plane is, therefore, known as co-ordinate geometry or the geometry of R,

Division :
Definitions :
Internal Division : If A — P — B, then P is said to divide the line segment AB inter-
nally into the segments PA and PB; the ratio of internal division being given by cither
PA : PB or PB : PA.
(In case of internal division, PA + PB = AB)

External Division : If P — A — B or A — B — P, then P is said the divide the line
segment AB externally into the segments PA and PB ; the ratio of external division being given
by either PA : PB or PB : PA.
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(In case of external division, | PA—PB | =AB.)

Note : (a) A statement like ‘P divides AB internally/ externally in ratio m : » is vague in as

much as it does not clarify which of the ratios % or % isequalto % . To clarify the meaning

of a statement as the above one we mention below a convention which is usually followed.

Convention :

I. We write ‘P divides AB or the line segement joining A and B in ratio 2 : n’ to mean

PA_m
that B -
II. We write ‘P divides BA or line segment joinging B and A in ratio m : n’ to mean that
PB _m
PA n’

[Note that AB and BA never have different meanings. Both of them mean the same line
segment. The different interpretations of the ratio m : n, depending on the mention of AB or

BA in a statement, is merely a matter of convention.

The convention is applicable to both external and internal division only when the ratio PA :
PB or PB : PA of the segments is not explicitly mentioned. |
(b) In case of external division,

PA PA
PB <1=P-A-Band PB >1=A-B-P

Alternatively,

PB PB
ﬁ>1: P—A—Bandﬁ<1:A—B—P.

Internal Division Formula : IfP (x,, y,) divides AB, the line segment joining A (x »V,and B
(x5, y) internally so that

N
PA _m _ mxg+nxy _ myg+nys 3¢
PB_ 5’ then Xp W and Ve W Q)d*‘??

)
Y )
Y Y A \Q\-‘I‘q
L
A(xr\’yr\} 'hk‘*-?:
. , o ' R
A(x..y,) P(x..y). B(x..
(30 POp yp) Blsy 3y) P(x,.y,) Q
B(x5.¥p)
X >
o > X ol > ol o g X

(a) (b)
Proof :

(a) If AB is parallel to x — axis [Fig (a)], then PA=| x, —x,| and PB =[x, —x, |.

PA _m [Xp—Xpl _ Xp—Xx _m

== = = )
PB =n |xg —xp|  xp—xp n
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= mX, — MX, = nx, — NX,
= mx_ +nx, = (m+n) x,.
_ Imxp tnXs
P m+n
In this case, y, =y, =y,
Lmy,tny, =(m+n)y,

_ mygtnys
et - .
Ve m+n

(b) If AB is parallel to y — axis [Fig (b)], then
X =X T Xp
mxy+nx, =(m+n)x,

mxnp + nX

— B A

=X, = ——
m+n

Also, PA=|y, —y,[, PB=|y, - y,|.

PA _m YA —vpl _Ya=Vp _m

PB =n = lvp —¥pl _yp_yB n'

_ My tnya
m+n

AR

(¢) If AB is not parallel to any of the axes [Fig (c)], let AA’, PP’ and BB’ be perpendicular to

X - axis, meeting it at A’, P’ and B’ respectively. Let AR be perpendicular to gp . meeting it at

R. Let AR intersect pp’ at Q.
Obviously AAPQ and A ABR are similar.

AP _AQ _ PQ

“PB AR BR"-

It is easy to see that,
AQ=A'P'=|0OP'-0A" | =|x,—x,],
AR=A'B'=|0B'-0A'|[=|x,—x,]|,

PQ=|PP'—QP' [=|PP'—AA’ |=|y,—y,].
BR=|BB' ~RB' |=|BB'—AA' |=|y —,|

PA _m _ AP _ _m

Also, PB n ~ AB  mtn-
AP:AQ m _ [Xp = X4 | _ Xp XA
AB AR m+n |[Xp—Xa|  Xp—xy

:mxB—mxAZ(m+n)xp — mx, — nx,
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= (m+n)x,=mx, +nx,

_l_
:}_)CPZ mxB nXA )
m+n
.. AP PQ m |yP_)’A| Yp — VA
larl = = =

Similarly, W 5= BR = in T pooal  vp-n
y = myg +nya

P m+n

Corollary (Midpoint formula) :
If P (x, y) is the mid point of the line segment joining A(x,, y,) and B (x,, y,), then

+ =+
x=-"2 y= 21202 (Taking PA:PB=1:1)

External Division Formula :

If P(x,, y,) divides AB, the line segment joining A(x Y and B (x,, y,) externally so

PA _ m
that PB n,then

Proof : Suppose A—B —P.

Then AB + BP = AP. (refer definition of betweenness)
PA _m __ PB+BA _,, BA _ m
n PB BP n

=

Thus B divides AP internally, the ratio of internal division being given by

BA _ m;n Therefore, by internal division formula, we have

BP
(m—n)x, +nXy (m—n)x, +nXy
x = =
B m—n+n m
m—n)y, +n m—n)y, +n
andyB — ( )yp Ya — ( )yp Ya )

m—n+tn m

It now easily follows that

— mxB—nXAandy —
P

myg —nya
P m-—n ’

m-—n

Similarly, if P— A—B, we can apply internal division formula to the co-ordinates of A and obtain
the above expressions. Note that in case of external divisionm —n = 0. (Why ?)
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Coordinates of any point on the line joining the distinct points A (x,, y ) and B (x,, ).

The ratio m: n of internal or external division of the line segment AB by P(x, y) can also be

expressed as % clorp:l (H 2%)

Xy yitwn o o
Lx= 11 Th 2 Ly = 11 —y 2 (internal division)
Xy — UxX -
and x = 11 _L:l : Ly = J’11 _iyz (external division).

In case of external devision p = 1 as, in this case m = n.
Both these results can be put together in the form :

>
IfP (x, y) is a point (different from B) on AB
x; T Ax, _Nnthn

+r 7 1+A

[ A =0 means that P coincides with A which is not a case ofinternal or external division. If

then x = (AeR, A= —1).

P coincides with B we cannot have the above expressions for its co-ordinates. Also A >0 < A
—-P-BandA<0<P-A-BorA-B-P|]

Some Useful Formulae

Distance Formula
If (x,, y)) and B (x,, y,) be two points in the plane then the distance AB or d (A, B) is given

2 2
by, d (A, B) = \/(xl —x)"+(V1 =) |
<~
Proof : Supposing AB not parallel to either of the axes,
let AM and BN be prependiculars drawn from

S Y _
A and B to x -axis; and AT be the perpendicu- A B(x,.y)
>
lar fromAto BN . (Fig. 2) Then, from the right A ,y»)
angled triangle ABT, (By Pythagoras Theorem), T

AB?=AT? + BT?* = MN? + BT*

=(r,—x)+(, —»)’

< ¥

O M N

2 2
=d(A,B)=AB= \/(Jq —x2)° + (y1 —)2)
. - - - e - .
The result is trivaial if AR is parallel to cither of the axes.

Corollary : The distance of a point P (x, y) from the originis OP= /x> + * .
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Formula for Area of a Triangle :
The area of a triangle with vertices at A(x,, y)), B (x,, ¥)) and C(x,, y,) is | A |, where,

A= % {xl (yz_y3)+x2 (y3_y1)+x3 (Vl_yz)}

x| Xy X3 (After knowing diterminants in Vol-II, this expression will be
_ 1|y »m o»n conven}ent to use. For the time being, you may skip this
2 expression)
1 1 1
Proof : Consider the triangle ABC with verti- &Y
ces at A(x, ), B (x,, y,) and C(x,, Ax ,p)
»,). Drop perpendiculars Bp, AQ B > C
and CR on x — axis. (X, 3,) T (x5,
If] A | denotes the area of the triangle
ABC, then
. X< —» X
A =area of trapezium ABPQ + arca 0 P(x,,0) Q(x,,0) R(x3,0)
of trapezium AQRC — area of vY’
trapezium BPRC.
~ 1 (BP+AQ) (PQ) + 1 (AQ+CR). (QR) - 5 (BP+CR). (PR)
1
=5 A0 T O =x) F 0y Fy) (g =x) T 0, T,) (5= X))
1
= 5 {xl (yz _y3) +x2 0}3 _yl) +x3 (yl _yz)}-

Since, at times A turns out to be negative, we take the areaas | A |.
Corollary : (Collinearity ofthree points)

The three points A(x,, y)), B (x,, y,) and C (x,, y,) will be collinear if and only if the
expression for arca of the triangle ABC is zero, which implies

xl(yz-y3) +x2 (y3-y1)+x3(yl-y2) = 0

x| X3 X3

or | Y1 Y2 V3| =q.
11 1

Example 1:
The distance between two points P (3, —-1)and Q (-1, 1) is

PQ= B-(=DP+(-1-1% =42 492 = J20.
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Example 2 :
Show that the triangle with vertices A (-3, 1), B (5, 4) and C (0, —7) is isosceles and right
. 73 .
angled, having arca equal to 5 $q. units.

By distance formula,

AB = {(-3-52+(1=4) = V6449 = 73

BC= VG-02+4—( = J555121 = V146

and, AC = V(=3-02 + 1-(-7}% = J9+64 = /73
Clearly, AB = AC, which shows that the triangle is isosceles. Also,
AB?*+ AC?*=73 + 73 =146 = BC>.
SomzA =90°1.e. the triangle is right angled.
Now, arca of ABC = % AB.AC = % J73 . 473 sq. units = ? Sq. units.
Example 3 :
Show that the point (% —%) divides the line segment joining the points (1, 2) and (2, 1),

internally inratio 3 : 1. Find the co-ordinates of the point which divides the line segment
joining the two given points externally inratio 3 : 1.

Let the given points be A (1, 2) and B (2, —1). If (x, y) divides AB internally in ratio
3.1,
32+11

_ _7
thenx = 1

3D+12 1

4 -7 - O
IfQ (x,, y,) divides AB externally in ratio 3 : 1, then by external division formula,

¥, = 32-11
3-1

_3(-D-12_ s

_5
=5 N 3-1 2

. . (5 5
Hence the point Q is (5,—5) ]

Inclination and Slope of a line :
Indination of a line is a real number 0 as defined below :

Definition :
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1. Ifaline L is parallel to x - axis or coincides with x- axis, then 6 =0.

2. IfLisnot parallel to x-axis, then let it interesect x-axis at a point P. Take X and X' respectively
on positive and negative x-axis such that X’-P-X (P is between X’ and X) and take a point
A onL so that A'is on the upper half plane of x-axis.

Inclination 6 of L is given by 6 =m LAPX.

L
<

0 =mZLAPX
p

X'=P=X

. — - - -
3. Inclination of AB, AB or BA (i,c. linec segment AB, ray AB or BA ) is defined as the

<>
inclination of AB.

Note :
1. If0is the inclination of a line, then 0 <0 <.
2. Parallel lines have the same inclination, and conversely.
3. Inclinations of perpendicular lines differ by % .

4. Inclination is essentially an angle - measure. The only difference is that inclination can be
zero, where as angle - measure cannot be zero.

Slope (Gradient) of a nonvertical line :
Definition : The slope of a nonvertical line (i.¢. not perpendicular to the x- axis) is given by
m = tan0; where 0 is the inclination of the line.
N.B. Inclination € [0, n), but slope € R. Slope of a vertical line is not difined.

Theorem : If P (x, y)) and Q (x,,y,) are two distinct points on a nonvertical line, then slope of the

g —
line PQ is givenby m= NN
X2 =X



Straignt Lines 231

AY
YdP (x,») "
180°-0
Q (x,.»,)
0
X +—5 \\Q&f X
v !
Y (b)

> _ &
Proof : Let QR L x— axis, PR L QR [See figure (a) or (b)]

L
If mis the slope of PQ, having inclination 6, then

| o - _ QR _ [»m-nl
(i) For0< 7 [Fig ()], m=tan0 = pp- = [0 1.

g . _ _ o a_ QR _ [»-nl
(if) For 0> % [Fig. (b)], m=tan 0=—tan (180° ) =~ 35 =~ |3 "y,
But y,~y, and x,—x, have the same or opposite signs according as 0 < % or 6> % .So,
removing the modulus sign in both cases, we get

_»n-n
Xy — X

Note :
1. Slope ofa line is positive, zero or negative according as the inclination of the line is less than

'V, equal to zero or greater than% .

2. Slope ofa vertical line is not defined.

3. Itis obvious that slope of a line is the ratio ofits rise or fall (y,—y ) to its run (x,—x,). Aline
with positive slope [fig. (a)] looks like rising and a line with negative slope [ fig.(b)] looks

like falling, as we move from left to right along the line.
Parallel and Perpendicular lines.
Theorem : Ifa pair of lines L and L, have slopes m, and m, respectively, then
() m=m <L ||[L orL =L, (coincident)
(i) mm=-1<L LL.
Proof : Taking 6, and 0, to be inclinations of L and L, respectively, m = tan 6, and m, = tan 0,.

Slopes m, and m, being definite (as they are given numbers), none of 0, and 0, is % i.e. none

of L, and L, is vertical.
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Suppose m, =m,. Thentan 6, = tan 6,.

i

5 . we have 6,,6,¢ [O,E) u(ﬂ, n)_

8 ,and 6, being inclinations, each different from 0,

Since tan x is a one -to- one function on

0%) U(% ﬂ),we have

i

Q,@eblg)uig,nltauy=tm1%.

= 0,= 0,.

- L, and L, have the same inclination and are parallel or coincident.

Conversely suppose L || L, or L, =L, Then L, and L have the same inclination. So, by
definition, they have the same slope. Thus m, = m,.

() 6,= 6, + 7 (b) 6= 6,+ % () 0,= 6, + 7%

Suppose m m,=—1, So one of m, , m, ispositive and the other , negative. Letus takem
>0 and m, < 0. Taking inclinations of L and L., as 0, and 0, resepectively we have,

m, = tan 6, > 0:>0<91<£

1 2
— T
m,= tan6, <0 = 6,> 5 .
mom,=-1=m=— -
1 2 In2 ml
N _ (n
0,=— = 0 —+9)
=tan o, fan0; cotd, = tan {5 Y]
r R 1]
0<9 < > =5 <2 +0, <m

Thus 6,and 7 +6, both belong to (Z.n).

Since tan x is a one-to - one function on (E , n), it follows from tan 6,= tan (% + 91) that

0,=7% +6,ie 0,-06, = 7.
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If we take m, <0 and m, >0, it similarly follows that 6,—6, = 7.

Thus, in any case, the difference of the inclinations of L and L, is % andhenceL L L,

Conversely suppose that L, L L,. We have already observed that none of L and L is
vertical. Since a line perpendicular to a horizontal line must be vertical, it follows from L, L L, that

none of L, and L, is also horizontal. Therefore 0, and 6, are cach different from 0 and % .Again lines
L, and L, being perpendicular the difference of their inclinations must be% .Hence 6, = % +0,o0r
0,= +0

s
2 2 1

Taking 0,= 7 +6,, tan 0,= tan ( %+62)

= —cot0,=— tanlez . [tan0, and cot0, are defined as 0, = % and 0,= 0]
N | _
"ml__m_2 ormm,=-1.

Similarly taking 6,= % + 6, we can deduce the same result. #
Angle between a pair of intersecting lines.

Theorem : If ¢ measures an angle between the intersecting lines L, and L, with slopes respectively

m, and m, then
m, —m,
tang =%, mm,

Proof': ?

[6=0,-6,] [6=6,-6,=6,]
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If0,and 6, are inclinations of L and L, respectively, then obviously measures of the angles
between L and L, are givenby 6 and n—0, where 6= [0, —0,|.

Taking 6 =10, —6,,

tan6 = tan (9, — 6,) = tanf, — tanb, _ m —m, .
1+tan91 tanez 1+m1m2
my —m
tan(n—0)=—tan 6 =— 72
1+ myiy

Hence in general, measure of an angle, ¢ (either © or n—0) between L, and L, is
given by

m —n

tan(i): + 1+ mynny

The same conclusion can also be obtained by taking 0=|0 —-0,[=0,-0, .

Note :
The positive value of tan ¢ gives the acute angle and the negative value gives the obtuse
angle between L and L.
Example 4 :
The slope of the line joining the points (1, 4) and (3, 5) is given by,
=4 _ 1
3-1 2
Example 5 :
The line through (-1, -2) and (2, 2) is not parallel to the line through (6, 5) and (1, 1), since
o 2-(=2) _ 4
the slope of the first line is m = 2-(-) 3
d the slope of th dlineism, = =2 = %
and the slope of the second line is m, 16 5.(m1¢m2)
Example 6 :

The line through (1, 5) and (4, 4) is perpendicular to the line through (2, 1) and (3, 4).

The slope of the first line is m = H = —%.
S T
The slope ofthe second line is m, = 37— =3

and so mom,=— 1.
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Remarks :

2=y1 _ -
> Xy =X Xy —X2

The order of the points does not affect the slope since

L d
The slope of'the line PQ does not depend on the pair of points P (x, ¥ ) and Q (x,, y,)

selected oniit. IfP" (x,", " ) and Q' (x,’, y,") is another pair ofpoints, then

Y=y _ »-no
Xy — %, ot (Fig. 8)
_ Q' (xz',yz}
AY- AXIS P’ (xlr’ y ' ) '
YV, =V,
Qx,»)
P(x,») o
x,=x/
-« // P x- axis
O
\4
Example 7 :

Show that the points A (-1, 4), B (0, 2) and C (2, —2) are collinear.

N 2—4
m, = The slope of ABZO_—(_DZ—Q,
m., = The slope of 1(3_(3 ==2=2__,
2 p 2-0

= m1= mz.

<~ YR
Hence, the lines AB and B(C are parallel or coincident. But since B is a point common

to both it follows that the two lines are same, i.e., the three points A, B, C are collinear.

Remark : The collinearity of the above three points A, B, C can be established by showing that the
expression for area of the triangle ABC is zero, i.e., by proving

-1 0 2 (For the time being, you may skip expressions in terms of
iy 2 o _0 diterminants and use the other expression for area of a traingle;
2 1 1 1 " because determinants shall be discussed in Vol-II)
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Example 8 :

Prove analytically that the internal bisectors
ofangles ofa triangle are concurrent, and hence Alx.p)
find the co- ordinates of their common point. i

Let A(x,.y)). B (x,. y,) and C (x,, y,) be
vertices of a triangle and let a, b, ¢ be the lengths

ofthe sides, BC, CA and AR respectively. (Fig. g (x,y) D a C(x,, )
2272
9)

Let the internal bisectors AD and BE of angles A and B meet at P. Since AD is
internal bisector, we have, (by a result of Euclidean Geometry)

BD _ AB _ ¢

DC AC b’

i.c. Ddivides BC, inthe ratio ¢ : .

Hence by internal division formula, co-ordinates of D are

(cx3 +bxy cy3+byy )

b+c °~  b+c

. DC b

2 + £

Again, 1 + BD 1 C
BD+DC _ c¢+b N BC _ c¢+b
BD c BD c

c¢.BC _  ac

= BD= b-+c T Dre

Since BE is internal bisector of /B and meets AD at P, we have from AABD,

AP _ AB _ _¢ _ b+c
PD BD ac a
b +c

i.e. Pdivides AD inratio » + ¢ : a and hence the co- ordinates of P are

ax; +bxy +ex3  ay) +byy +cyy
at+tb+c a+b+c

Similarly it can be shown that, if the internal bisectors of #B and ZC meet at Q, then
proceeding as above, the co-ordinates of Q will be same as those of P. Hence the three
internal bisectors of meet at a point whose co-ordinates are

ax;+bxy +ex3  ayp +byy +eyy
atb+c a+b+c

This point is called the incentre of AABC.
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Example 9 :

Prove analytically that the diagonals
of arhombus bisect at right angles.

Consider a thombus with one vertex at
origin O and side OA along x- axis. If the
rhombus is of side-length a, then the vertex
A has co- ordinates (a, 0). Let the co-ordinates
of Band Cbe (x,y)and (x,,y,) respectively.
Then,

BC=Cl=xl—x2 =X =atx,.

Ay-axis

Now, co-ordinates of the mid point

N xl yl N ‘ 0 A(G,O)
of OBare 5 5 | and those of AC

atx yi)_ (XL N
arc 2 2 )7 2 2

Hence, the two diagonals bisect each other.

N O n_-n oo O _ N _
ow, slope of OB = — = = m, and slope of AC = =m,.
X1 atxp Xy—a 2
Y Y :
Then, m .m, ot a X -a x22 2

But, OA=0C=a

=a= 1/x22 + y12 =>a =x+ty’ = yi=a-x.

2 2 2
_ N1 _a —x
Hence, m.. m_ = = =—1
> 1T 2 2 2 2 2
x2 —a X2 —a

which shows that OB is prependicular to AC .

EXERCISES 11 (a) |

Find the distance between the following pairs of points.

(D)3, 4 (-2, 1): (i) (-1, 0), (5, 3).
If the distance between the points (3, @) and (6, 1) is 5, find the value of a.

Cx,, y) B(x,, )

X-axis

Find the co-ordinates of the point which divides the line segment joining the points A(4, 6),B (-3,

1) in the ratio 2 :3 internally.

Find also the co-ordinates of the point which divides AB in the same ratio externally.



[238 Elements of Mathematics, Vol- 1
4.  Find the coordinates of the mid-point of the following pairs of points.
. .. (3 5
(@) (-7,3), (8,~4); i (2. -2), (-3.1).
5.  Find the area of the triangle whose vertices are (1, 2), (3, 4), (% %) .
6 If the area of the triangle with vertices (0, 0), (1, 0), (0, @) is 10 units, find the value of a.
7. Find the value ofa so that the points (1, 4), (2, 7), (3, a) are collinear.
8.  Find the slope of the lines whose inclinations are given.
(1) 30°, (ii) 45°, (iii) 60°, (iv) 135°.
9.  Find the inclination of the lines whose slopes are given below.
Oy (i) 1. (i) /3. (i) 1.
10. Find the angle between the pair of lines whose slopes are;
=1 i) V3, -1
(1) \/5 > (11) > -
11. (a) Show that the points (0, 1), (-2, 3), (6, 7) and (8, 3) are vertices of a rectangle.
(b)  Show that the points (1, 1), (=1, —1) and (—V3, V3) are the vertices of an equilateral
triangle.
12. Find the co-ordinates of the point P(x, y) which is equidistant from (0, 0), (32, 10) and
(42, 0)
13. If the points (x,y) are equidistant from the points (@ + b, b —a) and (a — b, a + b), prove
that bx = ay.
14.  The co-ordinates of the vertices of a triangle are (o, B,), (a.,, B,) and (a,, B,). Prove that
. . . o) tay +az By £P + B3
the co-ordinates of its centroid are 3 > 3 .
15. Two vertices of a triangle are (0, — 4) and (6, 0). If the medians meet at the point (2, 0),
find the co-ordinates of the third vertex.
16. If the point (0, 4) divides the line segment joining (—4, 10) and (2, 1) internally, find the
point which divides it externally in the same ratio.
17. Find the ratios in which the line segment joining (-2, —3) and (5, 4) is divided by the co-
ordinate axes and hence find the co-ordinates of these points.
18. In a triangle one of the vertices is at (2, 5) and the centroid of the triangle is at (-1, 1).
Find the co-ordinates of the mid-point of the side opposite to the given angular point.
19. Find the co-ordinates of the vertices of a triangle whose sides have mid -points at (2, 1),

(=1, 3) and (-2, 5).
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20.

21.

22.
23.
24,

25.

Ifthe vertices ofa triangle have their coordinates given by rational numbers, prove that the
triangle cannot be equilateral.

Prove that the area of any triangle is equal to four times the area of the triangle formed by
joining the mid points of’its sides.

Find the condition that the point (x, y) may lie on the lin¢ joining (1, 2) and (5, —3).

Show that the three distinct points (a*,a), (b*, b) and (¢?, ¢) can never be collinear.

IfA, B, Care (-1, 2), (3, 1) and (-2, =3) respectively, then show that the points which divide
BC, CA, AB in theratios (1:3), (4: 3) and (-9: 4) respectivelyare collinear.

Prove analytically :

(a) The line segment joining the mid points of two sides of a triangle is parallel to the third
and halfof its length.

(b) The altitudes of a triangle are concurrent.
(c) The perpendicular bisectors of the sides of a triangle are concurrent.
(d) An angle in a semicircle is a right angle.

11.2 Locus and its Equation

Locus : A set of points satisfying certain condition or conditions is called a locus.
A point belonging to the locus is called a ‘point on the locus’.
Chord of a locus : A line—segment joining two points on a Locus is a chord of the locus.

Equation of a Locus : The equation satisfied by the co-ordinates ofall the points ona locus
and by no others, is called the equation of/ to the locus.

Equation of a Straight Line :

Equation of a line L parallel to x - axis is of the formy =2
where A € R. Any point P (x, y) shall lic on the line iff y = A (Fig. 11), thatis (x,\) e L, v x €

R.
v Y A A
A
0,0  (x,2) s (A y)
< . > L
' , (A, 0)
( > )VY’ w; v

Similarly a line parallel to y - axis is of the formx =4
for A e R. Apoint P (x, y) shall lic on the lineifx=A1e. (A, y) eL v y €R.

Now we proceed to obtain the equations oflines which are not parallel to co-ordinate
axes.
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(a) Slope - Intercept Form :

Intercepts (Definition) : The x - intercept of a line is x - co-ordinate of the point where it
intersects the x - axis and its y - intercept is the y - co-ordinate of the point where it
intersects the y - axis.

A line parallel to x - axis (horizontal line) has no x - intercept and a line parallel to y -
axis (vertical line) has no y - intercept.

The term ‘intercept’ in ‘Slope-Intercept Form’ means the y - intercept of a line.
Theorem : If a line has slope m and y - intercept ¢ then its equation is y = mx + c.

Proof : Let L be the line. Since y - intercept is c, L intersects the y - axis at (0, ¢). Let us call
it the point Q. It is easy to see that the co-ordinates of Q i.e. x =0, y = ¢ satisfy the
equation y = mx + c¢. We shall prove that co-ordinates of all other points on L also
satisfy the given equation.

4
Let P (x, y) be any point on L, other than Q. Therefore L is the line pQ.

L d
. . . : . . —c
Since PQ intersects y — axis, it cannot be vertical and its slope is given by p—
—c
m= and we get y = mx + c.

Thus, co-ordinates of all the points on L satisfy the equation y = mx + ¢. We now
show that co-ordinates of any other point, not on L, cannot satisfy the given equa-
tion y =mx + c.

A Suppose Q. (x,, y,) ¢ L and
Y IS EIG|
W00 ¥, =my, +c.

\ P(x,y) We claim : x = 0.
Forifx=0,y =mx,+c=y =c
\ » But ,)Cl:O, yl =c= Ql (xl’ yl)

0
L
coincides with Q (0, ¢). So Q, € L contrary to our assumption.
_ I S
Now,y, =mx tc=>m= o x=0

< e > ©
= m = slope of QP = slope of QQ; . Since QP and QQ; have the common

point Q, it follows from equality of their slopes, that they must be coincident lines.
So Q, (x, y)) € L, which is a contradiction.

This contradiction makes it clear that if a point lies outside the line L, its
co-ordinates cannot satisfy the equation y = mx + c¢. Therefore, by definition of equation
to a locus, it is proved that y = mx + ¢ is the equation of the given line.

Note : Hereafter we shall make no distinction between a line (in general, locus) and its
equation. Phrases like, ‘the line y = mx + ¢’ shall mean ‘the line whose equation is
given by y=mx + c’.
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Example 10 :

Obtain the equation of a line which meets the y - axis at (0, — 3) and makes an angle
measuring 45° with the y - axis.

Solution : There can be two positions of the line, shown as
Y A L, and L, in figure. In both positions, the y - in-
L tercept of the line is given by ¢ = — 3.

1

L
2 S The inclination of L, = 45° and the inclination of
\.@ 0 45° L =135°
) i
X' >
P\

So slope of L, = m = tan45° =1

5°l4sy” T and slope of L, = m, = tan 135° =— 1.
A(0,-3) Therefore, equation of L, is given by y =m x + ¢
\ =x—-3orx—-y-3=0 (i)
\ A Equation of L, is given by y = mx + ¢
Y =—x—-3orx+y+3=0..... (ii)

(1) and (ii) give the equations corresponding to the different positions of the line.

Corollary 1 :

(b) Slope - point Form
Let a line have slope m and let it pass through a point Q (x,, y)). Then its equation

isgivenby | (y—y)=m(x—xp)]. 4)

If the y - intercept of the line is ¢, then in slope - intercept form its equation will be
y=mx-+c (5
Since it passes through (x, y)) we have
y, =mx +c (6)
From (5) and (6), we get y —y, =m (x — x,).
Corollary 2 :

(¢) Two - point form

Let a line pass through two given points Q (x, y,) and R (x,, y,). Then the equation
of the line is given by

_ =N
y—yl—ﬂ(x—xl) . (7
Since the line passes through Q (x, y,) and R (x,, y,) its slope is
=N
XXy

Also the line passes through the point (x, y,) and has slope m. So its equation is

Y2 =y
G-y =me-x) = o).

(by substituting the value of m)
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Corollary -3 :
(d) Intercept Form
Let a line have x - intercept a and y - intercept b. Then its equation is
x, Y_
a+b -
The line has x - intercept a and y - intercept b. So it passes through (a, 0) and (0,5)
and hence by two - point form, its equation is given by
b-0
G-0=H5—, -,
OLyZ—s(x—@,
Yo_x
or, 5 . + 1
X Y
or, ~ + 5 1
(e) Equation of a line in normal form :

Theorem : Let a line L be at a distance p from the origin. and let the line through origin,

(D

)

Proof : (1) L does not pass through the origin.

perpendicular to L, meet it at P. If P is the point (p, o) in polar coordinates (obvi-
ously p = OP), then

the equation of L (normal form) is given by x cosa + y sin o = p,
provided L does not pass through origin. AY
If L passes through origin (i.e. p = 0) '\

xXcosotysina=p

. . . _ T
is the equation of L, provided o = 5 +0 X'«

0 P X
where 0 is the inclination of L. \
L

We suppose that L is oblique (neither vertical nor horizontal).

 d L d
So, OP is also oblique and therefore slopes of both L and OP are determinable.

Since P has polar coordinates (p, o) it has cartesian co-ordinates (p cosa, p sina).
. - . H
Also origin (0, 0) is on QP

psina—0

L d
.. Slope of OP = pcosa—0

= tanao.
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<>

= Slope of L=—-cotaa (- LLOP).......... (1)
Let Q (x, y) be any point on L, different from P.
_ . © _ y—psina .
.. Slope of L (i,e QP )= X peosa (ii)
() and (ii) imply

y—psinae _ cogq

X—pcosa sind
=Xxcosat+ysino=p......... (ii1)

The cartesian co-ordinates of P also satisfy (iii). (The polar coordinates satisfy some
other equation, known as polar equation ofa line, which is beyond our scope). Thus co-
ordinates of every point on L, satisfy equation (iii).

Now suppose Q (x,y) ¢ L
and x, cosa.+y sina=p ... (iv)
Supposing Q, (x,,y,) € L, we have

X, cosaty, sine=p ......... (v)

. . =N
(iv) and (v) imply Xo—x] cota..

%
= Slope of Q;Q, =slopeofL

Since Q, € L, it follows that Q, € L, which is impossible. So co-ordinates ofany point,
not on L, cannot satisfy (iii). So equation of L is given by
X cosa+ysina=p.
If L is either vertical or horizontal then it is easy to check that its equationis x cos o
+ysino=p.
(2) L passes through origin :

In this case p = 0. So P coincides with origin which is the pole. So polar co-ordinates of
P are given by (0,a) where a is arbitrary and consequently x cos a+ ysin a=p (p =0),
does not represent any particular line. It represents the family oflines passing through
origin.

Now, suppose inclination of L is 6.

[0+ % , slope of L is given by

m = tanb.
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The equation of L is given by (slope - intercept form)
y=mx =x tan6 (Taking y - intercept = 0)
Or ycosO—xsin6=0=p

Orxcos(% +0) +ysin(% +0)=p
Or x cos o+ y sin o = p; where a = % + 6.

Ifo= % , then L is the y - axis, having equation x = 0, which is same as

xcosa+ysina=p (p=0)
where a = % +0ie 7.
Thus the equation of L, when it passes through origin is given by

xcosoc+ysina=p(p=0),a=% + 0

where 0 = inclination of L.
This completes the proof ofthe theorem

() General Form

From the above discussions we see that the equation of a straight line in different
forms is a first degree equation in x and y and contains a maximum of two arbitrary real

constants.
Consider the slope - intercept form of equation ofthe line y = mx +c,

which contains two arbitrary constants m and c. If we fix the constant c i.¢., the ling is
made to pass through the fixed point (0, ¢) then for different values of m we get different
lines. Similarly, if we fix m and vary c we get a family of parallel lines for different values

of c. The line will be uniquely determined if both m and c are fixed.

Similarly, the intercept form of equation of a line contains two arbitrary constants ‘a’
and ‘b’ whereas the normal form contains two arbitary constants p and a. If the two

arbitrary constants are fixed then the line is unique.
Let us consider the general equation of first degree in x and y given by
Ax+By+C=0. ... D)

IfA=0=B, C=0, no equation is obtained.

IfA#0and B =0, then (11) reduces to x = —%

which is the equation to a line parallel to y — axis.

IfB # 0 and A = 0, then (11) reduces to y = — %

which represents a line parallel to x-axis. If A = 0, B # 0, then (11) can be reduced

to slope intercept form as y = (—%) X+ (—%J
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with slope m =— % and intercept ¢ = — % .

Also (11) can be re-written in intercept form as X LV

%) (-5)
with x - intercept — % and y - intercept — % i

The above discussion determines that every equation of first degree inx and y represents
a straight line.

Example 11

(i) Equation ofa line with slope 2 and passing through a point (1, — 1) (by slope - point
form) is givenby y — (1) =2 (x - 1)
Le.y+l1=2x-2o0r2x—y-3=0.

(i) Equation of a line passing through points (2, 3) and (-1, 0) (by two-point form) is
givenby y— 3= 2= (x-2)
ory—-3=x—-2)orx—y+1=0.

(iii)) Equation of a line with x - intercept — 2 and y - intercept — 3 (by intercept form) is
givenby_i2 + % =lor3x+2y+6=0.

(iv) Equation of a line at a distance 5 units from origin and its normal making an angle

Solution :

measuring 60° with positive direction of x- axis (in normal form) is givin by

x c0s60° + y sin60° = 5.

60°

5,300°
o (5, )

The figure tells that there can be two positions of such a line, the foot of the perpen-
dicular (normal) from origin upon the line, being given by P (5, 60°) and P_ (5, 300°) or,
for that matter, P, (5, — 60°).

Hence equations of the line in both cases are given by

x cos (£60°) + y sin (x60°) = 5

orx cos 60°+ysin 60°=5orx+ \/3y—10=0.
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(v) If a line is given by 3x — 2y + 7 = 0, then it has

__ 3 _3 - _-1_1
slope m = — 5 3 and y - intercept ¢ 5 "7

(vi) The line % + % = 1 passes through a fixed point, whatever be the values of a, 5 ;
. .2 3

subject to the condition iR 1.

Obvious, since the point (2, 3) satisfies the equation, whatever be the values of a and
b, under the given condition.
Here there is nothing special about 2 and 3 in the given condition. You can choose

any other pair of numbers, say m and » and state the condition as % + % = 1. The fact can

also be stated as :

<

The system of lines % + 5 1;a, b € R, pass through a fixed point (m, ») under the

condition 2 + 2 =1,
a b

Example 12 :

A line intersects x and y — axes at A and B respectively.P (a,b) divides AB internally/

. . PA mo .. . NS
externally in ratio given by B - Find equation of AB in each case.

Solution : Soppose the coordinates of A and B are given by (p, o) and (o, g) respec-

tively. Consider first the case of internal division. Since % = % we have, by internal

division formula, taking x, =a,y,=b, x, =p,y, =0,x,=0,y,=¢q

_motnp _ np
m+n m+tn’
_mgtno _ mq
m+n m+tn’
m+n +
Sop: a’q:ub.

m

L d
Here x - intercept and y - intercept of AB are p and g respectively. So equation of

N e x Y
AB, in ‘intercept form’ is given by P + q - 1.

L d
Putting values of p and ¢ and simplifying, we get the equation of AB, in case of
internal division, as
nx o By _

+ =n + m.
a b
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Next consider external division.
By the external division formula

mo—n.p np
a: =

m—n m—n
b_mq—n.o_ mq

m—n m—n"
. _  m-—n _m—-n
SpPT-T———a,q= b.

y

g =

) . . » X
Putting these values in the ‘intercept form » +

we get, after simplification

hx _my _ =
abn

n.

Lines continued :

Consider the equations of lines L, and L, given by

Liax+tby+ec =0

Loiax +by+c, =0.

9 and m, = — ) respectively;

by b

supposing the lines to be nonvertical i.¢. b, and b, are different from zero. We also suppose
a =0, a,= 0ie. neither of the lines is horizontal.

Slopes m and m, of L and L, are given by m = —

Case of parallel lines :
The lines L, and L, are parallel if and only
ifm1=mzorzl—l=z2—2 orj—1 =£—1 =l,say.
2 2 A
~a,=ah,b,=b . ()isobviously nonzero)
Therefore we can write equation of L, as

Max+by)+c,=0 orax+by+c =0. (Taking ¢, = %)
Thus we have the following
Working Rule : (Parallel lines) :
If a line L is represented by ax + by + ¢ = 0, then the equation of a line L', paralled to
L, is givenby ax + by +d = 0.
If, in the equation of L, either a or b is zero, then also the equation of L', paralled to L,

is given by ax + by +d = 0, since, in this case, bothax + by +c=0and ax + by +d =0
represent lines parallel to the same coordinate axis.
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A test for parallel lines :

The lines L, and L, represented by
L :ax+by+c =0and
L,:ax+ by +c,=0 are parallel (or coincident) if and only if a 5, — a,b, = 0.
a b
When none of a, a, b, b, is zero, we get a,b, —a,b, = 0 from g = g
The test also applies even when any one of a , b, and any one of a, b, is zero. [Both of
a, b and/ or both of a,, b, cannot be zero as, in that case we do not get any equation]
As an illustration, let us consider a, = 0.
Thenab,—ab =0=a,b=0
=a, =0 (a, and b, cannot be both zero)
= L, and L, are horizontal lines and hence parallel (or coincident).
Conversely suppose L, || L, and a, = 0.
Now a, =0 = L, is horizontal
So, L, || L, = L, is also horizontal = a, = 0.
Therefore a b, —a,b = 0.
Similar arguments show the validity of the test in all other cases.

Case of perpendicular Lines.

The lines represented by x + @ = 0 and y + b = 0 being respectively vertical and
horizontal, are mutually perpendicular.

Now consider a line L with its equation as follows :
L:ax+by+c=0. (az0,b=0)

We can write the equation of a line L',

Perpendicular to L, as

L':bx—ay+d=0.

The slopes of L and L', are respectively — % and %. The product of the slopes being

— 1, the lines are mutually perpendicular. Thus, we have the following.
Working Rule (Perpendicular lines) :
If a line L is represented by ax + by + ¢ =0, then the equation of line L', perpendicular
to L, can be written as bx —ay +d = 0.
To write the equation of L', perpendicular to L, just interchange the coefficients of x
and y in the equation of L and write one of the cofficients by reversing its sign.
Example : If a line L is given by 2x + 3y + 5 = 0 then 3x — 2y + k= 0, k € R, represents the
family of lines L' such that L' 1 L.

Note : The rule applies even when one of the coefficients (i.e. cofficients of x or y) in the
equation of Lis equal to zero.
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Condition for coincidence of Lines :
Consider lines L, and L, given by equations,
Liax+tby+ec =0
L,iax +by+c,=0.
We suppose that a, b, and ¢, are all different from zero, fori =1, 2.

We have seen that L is parallel to L, if and only if Z—l = 2)2_1
2
e _bh_a,
What happens if o by o
Writing L = b S = A, the equation of L, can be writtenas A(ax+by+c)=0
g an b2 &) > q 1 2 zy 2 :

Therefore coordinates of the set of points satisfying the second equation also satisfy the
first equation and vice versa. Hence L, and L, are identical sets of points and are, there-
fore, coincident lines.
Conversely suppose that
ax+by+c =0..... (D
andax +by+c =0.... (2);a,#20,b,#0,c.=0fori=1,2.
represent the same line L.
From equation (1) we get
. o 4] . _ Cl
x — intercept of L =— —, y —intercept of L =— .
a by
Also, from equation (2),
. (&) . _ (&)
x —intercept of L =— —=, y — intercept of L=—- —=.
ap by
[Remember, x — intercept of line is the x — co-ordinate of the point where it inter-
sects the x — axis and its y - intercept is the y - co-ordinate of the point where it intersects
the y — axis]
Since x and y - intercepts of a line are cach unique, we have

C1_6'2 C_C2 al_bl_cl
P i
We summarise the above discussion as :
The lines represented by

ax+by+c =0
andax+by+c,=0 (a,20,b.20,c 2 0fori=1,2)
are coincident if, and only if

a _bh _q

a b o
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Note : (1) Lines represented by
ax+tby+e =0andayx +by+c,=0(a,b and c, are nonzero for i = 1, 2) are parallel
and different if, and only if
a _h a
a b oo

a :

(2)ax+c,=0andax +c,=0represent coincident lines if and only if i - and
. o b

by+c =0andby+c,=0represent coincident lines if, and only if gl = % . (Prove)

Length of perpendicular from origin on a line :
For a vertical line x = a or a horizontal line y = b, the length of the perpendicular from origin is
givenby | a | and | b | respectively.
Now consider a line L represented by ax + by + ¢ =0 witha= 0 and b = 0.
If ¢ =0, then obviously origin is a point on the line and therefore length of the perpendicular
from origin on L is taken as zero.
Suppose that ¢ = 0. Let p denote the length of the perpendicular fromoriginon L. Then p
> 0.
Now suppose that the equation of L in normal formis given by
xXcosatysina=p
or xcosa+ysinoa—p=0.
Since x cosa+ysinoa—p =10
andax +by+c=0

represent the same line, we have by the condition for coincidence.

cosa _ sino. _ —pP  4/cos’ oc+51n20L

a b c +Va® +b> +Va +b2

a .
L COSO = —F———— sina=
’ +Va2 +b2 “T ++a? +b2 e +\/a +b2

p being positive, the sign of the radical in the denominator has to be + or — according as ¢ <
0 or ¢ > 0. After choosing the sign of the radical we can easily evaluate o .

—C

+ /az 52| with proper choice of'the sign of the radical, gives the length of the

perpendicular fromorigin on L.
Exercise :

Find the length of the perpendicular from origin on the line x + /3y +4 = 0. Also express
the equation of the line in normal form.
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Solution :
Herea=1,b= [3,c=4.
Ifx cos o+ y sin o = p is the equation of the given line in normal form, then

— a 1
coOsoL= ——=— =
+ /az B2 1+ 3
sin o = b = 3 p= —C -4
i\/a2+b2 V1437 i\/a2+bz V143

In order to make p positive we choose ‘-’ sign for the radical +./1+3.

Sop=2andcosa=— % sin o = — ﬁ

(choosing ‘-’ sign for the radical in the expressions for cos a and sin o)

so tan o= +/3 =tan % , giving the general solution o = nmt + % , h € z. But as sino. and
cos a are both negative, o must be in the third quadrant. So we take » = 1 and obtain the

n_
value of xas n + 3 43.

.. Length of the perpendicular from origin on the given line is 2 (in the chosen unit of
distance) and ‘normal form’ of the given equation is :
4 . An
X €0S —3= +ysin 3~ = 2.
A word of caution :

In working out exercises as the above one, writing p = < or <

1\/a2+bz i\/a2+b2

—C

place of the expression p = ————= and determining the sign of the radical so as to
v a’ +b2

make p > 0, does not pose any difficulty in determination of the length of the perpendicular
from origin; but it certainly leads to erroneous conclusion while evaluating o for the

—C

a . b

————— and sin « = —=——=—=_. Therefore, the form
+Va® +b? +Va? +b2

—C

of the expression p = ———=—==as such, must be adhered to, while determining o from
+ a® + b2

normal form of the equation. Any manipulation of signs in the expression p =

affects the expressions cos o =

coso =———— and sina =——2—, to obtain the normal form of the equation of the line.

+ a2 +b2 i\}az +b2

For example, in the above exercise, if one writes p =

asp= — %
+41+3 F1+3

of the radical has to be taken to make p > 0. But with the “+” sign of the radical, one gets cos a

then ‘+’ sign
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V3
2

= % and sin o = which lead to a ‘normal form’ that is erroneous.

Point of intersection :
Theorem : If two distinct lines L, and L, represented by the equations :
L:ax+by+c =0
L :ax+by+c,=0

. b, —b,c clar —cray
intersect at P (&, k), then h = —S2—2L k= .
(h, &) aby —axby ayhy —azby

Proof : Since the lines intersect at P, P is the point common to L, and L.

sLah+bktce =0 ... )
and ah +bhk+c, =0 ... (ii)
Obviously L, and L, are not parallel and therefore, a,b, — a,b, = 0.
Solving (i) and (ii) for # and £,
we get

g b mha L an —aa g
aby —agh > " aby —azh

Concurrent lines :

If P is the point common to distinct lines L, L,

..... L, then the lines are said to
concur / be concurrent at P.

Theorem : If three lines L , L, and L, be represented by the equations :
L:ax+by+c =0
L ,:ax +by+c,=0 (The lines are supposed to be distinct)
L,:ax +by+c,=0,then

aj bl 4]
a, (be,~be)+a,(be —be)+a, (be~be)=0ic. |92 P2 2=
as b3 3

< L, L,, L, are all parallel or concurrent.
[ In the left hand side equality above, the suffices 1, 2, 3 occur in cyclic order in

subsequent terms. It is abbreviated as Zal (b,c, —b,c) =0]
12,3

Proof : Suppose Zal (bye,—b,c,)=0

1,23 . . .
We have to show that the lines are all parallel or concurrent. Given three lines L, L,, L.,
exactly one of the following must be true :
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() L, L,L,areallparalleli.e. parallel to one another.
(i) L,L,L, arenot allparallel.
So it is enough to show that the second possibility leads to concurrence under the assumption
Zal (be,=byc)=0.
1,23
IfL,, L, L, are not all parallel, then there is at least one pair of intersecting lines, say L, and
L,. (One can also take any other pair.)
Let (h, k) be the point of intersection of L, and L..

bic, —byg Cldy — O
Therefore h = k= )
eretore a\by —ayb; ayby —asb

[L||IL,=ab,—ab =0]
It is easy to see that
a,(be,—bc)+b (ca,—ca)+c, (ab—ab)issameas
a, (1;263 - bscz) ta, (bSCl - b1c3) ta, (blcz_ bZCl)'
So it follows from 2,41 (b,c,—b.c)=0
1,2,3
that a_ (b,c,—b,c)+ b, (ca,—c,a)+c, (ab—-ab)=0.

Dividing by a,b, — a b, , which is nonzero,

a, biey =byey b, Q9270 o —
aiby —azby aiby —azby

=ah+bk+c =0.

Therefore the point of intersection of L, and L, lies on L, and consequently L , L, L, are
concurrent.

Conversely suppose that L , L, L, are all parallel or concurrent. We have to show that
Y1 (bye,~b,e) =0,
123

We first take up the case of parallelism.. Supposing all parallel.

LIIL,=ab,—ab =0 ... (1)
L ||L,=ab,~ab,=0 ... (ii)
L ||L,=ab ~-ab =0 ... (ii1)

(D), (i) & (iil) = ¢, (a,b,—ab)+c,(ab,—ab)+c, (ab~ab)=0
=a, (be,~bc)+a,(be ~bc)+a (be—brc)=0.
Next suppose that L , L, L, are concurrent, say at the point (4, k), Then
ah+bk+c =0..... (D)
ah+bk+c,=0...... (2)
ah+bk+c,=0...... 3)
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. byc3 —b3cy Ca3 —C3ap
SO]V]Ilg (2) & (3), h= a2b3 _a3b2 , k= a2b3 —a3b2 .

Putting these values in (1),
b2(,'3 —b362 n Crdazy —Cc3dp
agby —aszhy "1 aby —aszhy
ora (be,—bc)+b (ca,—ca)+c (ab,—ab)=0
[a,b,—ab,z0asL,| L,]
ora (be,~bec)+a,(be ~bc)+a, (be,~bec)=0[]

a +€,=0

Corollary (Condition for concurrence) :
If the set oflines {L , L,, L.} contains an intersecting (nonparallel) pair,
al bl ] /
then| 2 22 @2 |=gor a(b,e-b.c)ta,(bc-bec)ta(bc,-bc)=0
a3 by c3
turns out to be the condition for concurrence of L, L, and L, as, in this case, the possibility of all
the lines being parallel does not arise.
Corallary (condition for parallelism) :

Ifthe set of lines {L , L, L.} contains a parallel pair,

a b g
then| %2 22 @ |=gor a,(b,c,-b.c)ta,(b,c-bc)ta,bc,-b,c)=0
az b3 c3

turns out to be the condition for parallelism (all the lines being parallel) as, in this case, the
possibility of concurrence does not arise.

In otherwords, if the condition is satisfied and two of the lines are parallel, then the third line
must also be parallel to the first two.

N.B. If the condition is not satisfied then the system (set) of lines {L , L , L.} neither
constitutes a parallel system (all parallel) nor a concurrent system.

Exercise : Test for concurrence

2x—y—-3=0,x-3y+1=0,4x-5y-3=0.

2 -1 3
Solution: | 1 3 1 |=20+5+1(=3-4-3(5+12)=0.
4 -5 3

[Those, not familar with determinants, may calculate D a (b,c,—b,c,), taking values of
the coefficients and constant terms as a, b, ¢ respectively Wh%fSSubscripts 1,2.3 for 1st, 2nd and
3rd lines]

Slope offirst line = 2, slope of second line = %
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Since slopes are not equal, this is a non parallel pair in the set of lines. [ You can also test any
other pair].
.. The set of lines are concurrent.
N.B. You can also find the point of intersection of one pair. If the coordinates of the point of
intersection satisfy the equation of the remaining line, then the lines are concurrent.
* Example 13 : (You may skip this example or use alternative expression in place of the determinant)

If {a, b, ¢} and {p, q, r} are sets of distinct real numbers, prove that the lines
(a-bx+(p-q)y-2=0,(b-c)x+(q-ry+1=0
and (¢ — a)x + (r — p)y + 1 = 0 are all parallel or concurrent according as a (g — ) + b
(r—p) +c (p —q) is or is not zero.

a-b p-q 2
Solution: | 2~¢ -7 1| (-~ The rows add upto zero)
c—a r—-p 1

So, the lines are all parallel or concurrent.

To ascertain parallelism or concurence we have to look for a parallel or intersecting
pair in the given set of lines.

The first two lines are parallel if, and only if,

(a@a-bg-n-Gb-a@-g=alg-r+br-p+tcp-q)=0.(A)

By the cyclic order the coefficients of x and y in the given equation, the condition for
parallelism of any other pair of lines is also given by (A).

Therefore there is parallel or intersecting pair in the given set of lines according as

a(@-r)+b(r-p)+tc(p—-qg)=0o0r =0.

The given lines are all parallel or intersecting according as
al(g—r)+b(r—-p)+cp@p-g)=0or=0.

Note : By assigning numerical values to a, b, ¢, p, g, ¥ you can obtain numerous triads
of lines all of which are either parallel or concurrent. To ascertain parallelism/ concurrence
assign numerical values to any five of the unknowns a, b, ¢, p, g, r arbitrarily and obtain
the values of the remaining unknown by solvinga (g—r)+b (r—p)+c(p—¢q) =0. If s is
the solution, then the lines will be all parallel or concurrent according as you take the
remaining unknown equal to or different froms.

11.3 Family of lines through the point of intersection of two lines
The Lines:ax+by+c +r(ax+by+ec)=0,LeR:
Let the lines L _and L, be given by
L:ax+by+tc=0._..... (i)
L:ax+tby+tc=0....... (ii)

Now consider the equation
ax+tbyt+c +h(ax+by+tc)=0...... (iii)
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Equation (iii) being of first degree in x and y, represents a line for every value of A inR.
So, for all A € R, we get a set of lines (also called a family or system of lines) given by
equations (iii).
Further informations about this family of lines is given by :
Theorem :
Given two lines, L : ax+by+c¢ =0 and L, : ax + by + c, =0, the equations
ax+by+c +r(ax+by+c)=0,for ) e R represent the family of lines.
(1) through the point of intersection of L_and L, if they intersect;
(ii) parallel to L and L, if they are parallel.

Proof : Two lines L and L, in a plane are cither parallel or intersecting. [The lines L
and L, with the given equations contain points (x, y) which all lie in the cartesian plane.
So L_and L, are necessarily coplanar. ]

Let L, be the line represented by ax +by +c¢ +A (ax+by+c)=0
or (a, + Aa)x + (b, + b))y + (¢, + rc,) = 0.
It is obvious from the theory of determinants
a by c
that| 2 by 2 = (. [Without using determinants alternative condition for
ap+ 7\.612 bl + 7\.])2 a+ ?\.02
concurrence/ Parallelism may be used. |
SoL , L, L, are cither concurrent or parallel.

() IfL and L, intersect, thenL , L , L, must be concurrent. In otherwords, L, passes through
the point of intersection of L and L.

(i) IfL_and L, are parallel, then L , L, L, must be parallel so that L, is parallel to L or L.
Note : (1) For =0, L, coincides with L .
(2) Incase L and L, are coincident, then for every 1., L, is a line coincident withL or L.
Alternative Proof :
(1) Suppose L_and L, intersect at (4, k).
Thenah+bk+c =0and ah+bk+c,=0.
- ForeveryheR,ah+bk+c +r(ah+bk+c)=0.
Therefore L, passes through the point of intersection of L and L, for every A € R.D
(i) Suppose L | L..
Thenab,—a,b =0.
ConsiderL_:ax+by+c =0
andL, :(a, +ha)x+ (b, +Ab,) y+(c, +Ac,)=0.
a (b, +rb)—(a,+ra)b =k(ab,—ab)=0 (- ab,—ab =0)
=L | L.
Since L_ || L,, it follows that L, is parallelto L , L, for every 2 € R[]
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Example 14

(i)
(i)

(i)

(iv)

(v)

(vi)

The two line x +y—3 =0, 3x +3y — 9 = 0 are the same.

The two lines x —y + 1 =0, 3x — 3y + 2 = 0 are parallel, but different as the
constants are not in the same proportion as coefficient of x and y.

The two linesx —y + 5 =0, 2x + 2y — 1 = 0 are perpendicular, since

m .m=1(-1)= -1

and their point of intersection is given by

(-Dx(-D)=5x2 5x2-1x(-1) _(—_9 ﬂ)
Ix2-(-)x2 "Ix2-(-hx2) 4’4 )"

Obtain the equation of the line passing through the intersection of 3x — 2y + 7 = 0,
x + 3y + 3 =0 and the point (1, — 1).

The equation of the line passing through the intersection of

L :3x-2y+7=0

L, :x+3y+3=0,is given by

3x—2y+7+A(x +3y+3)=0,(heR) (17)

Since it passes through (1,— 1), wehave [3. 1 -2 (-1)+ 7] +A[1+3(-1)+3]=0

i.e.x=—%=—1z.

Thus, the equation of the required line is (from 17)
Bx-2y+7NH+(-12) (x+3y+3) =0
ie.—9x—38y-29=0

or 9x + 38y + 29 =0.

Obtain the equation of the line passing through the intersection of x =0, y = 0 and
perpendicular tox +y + 1 =0.
Any line passing through the intersection of x =0 and y =0 is given by x + Ay =0

whose slope m, = — %

If this is perpendicular to x + y + 1 = 0, whose slope is —1, then
m(D=-1=1= -1

Hence the required line isx + Ay =0, or x = y.

Obtain the quation of the line passing through the intersection of the lines 2x + y = 0,
y+2=0and whose coefficients are in A.P. with common difference 4.

The equation of the line through intersection of 2x + y =0 and y + 2 = 0 is given by
Cx+y)+A(y+2)=0ic.2x+(1+1)y+2L=0.

The coefficients, 2, 1 + A, 2A are in A.P. with common difference 4.

Hence, ] + A —-2=2A—-(A+1)=4

=Ai-1=40rr=5.

.. Equation of the required line is 2x + y) + 5(y +2) =0

or 2x + 6y + 10 =0.
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11.4 Distance of a point from a line

Before obtaining a formula to find the distance of a point from a line, we shall obtain

some preliminary results.

We have already discussed about distance btween two points. If P and Q be two given
points, then there are infinitely many paths (curves) from P to Q, out of which the path along
P Q is the path of shortest distance and distance from P to Q is defined as

Similarly, let P be a given point and L
be a given line. Let A, B, C, D, E, .... etc
be different points of L (fig. 15). Then the
distance AP, BP, CP, DP, EP... can be
calculated by using formula for distance
between two points. Of all such distances,
PD (the perpendicular distance) is the
shortest distance (from Euclidean
Geometry). This PD is defined as the
distance of P, from the line L, that is d (P,
L) =PD. Clearly, the distance of any point

P, (situated on L), from L is zero.

Similarly, the distance between
two lines, is the length of their common
perpendicular. Hence distance between
two parallel lines, L and L, is the
distance of any point P on L from the
line L, (Fig. 16) i.e,d (L, L) =d (P,
L).

Position of a point with respect to a line

Consider a nonvertical line L,
given by ax + by +c=0and apoint P
(x,,y,) . (Fig.—17).

Let a line through P(x,, y,) parallel to
the y — axis, interesect L at M (x,,)).
We define :

() P(x,y)isabove L =y >yie. y,
— y> 0.

(i) P(x, y)isbelow L <y <yie.
y—y< 0.

Since the point M (x,, y) is on the line L,

we have ax, +by +¢=0

Xn"

'Y'f

|N

d (P, Q)=PQ.
p
4 L +—o—o— |
B C D E
P L1
/ N y
Q
AY
\ P(X,,y,)
p M, y)
|
N N4 X
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ory= — w (b#0, since L is nonvertical)
axy+c¢  ax;+by +c
So,(y,—y) =y, * lb =— bl :

. s . . +by;+c .
Hence, the point P (x,, y)) will lic above or below the line ax + by + ¢ =0, if % is

positive or negative.

i.e. (ax, + by, + c) has same sign or opposite sign as that of b, respectively.

In particular, the origin will lie above or below the line, ax + by + ¢ =0, according as c and b
have the same sign or opposite sign.

It follows from the above considerations that if both (x, y ) and (x,, y,) lic above or
below the line, ax + by + ¢ = 0, then both ax, + by, + c and ax, + by, + ¢ have the same or
opposite signs as that of b. Therefore, if one of (x, y ) and (x,, y,) is above and the other,
below the line ax + by + ¢ =0, then ax + by + ¢ and ax, + by, + ¢ have opposite signs.

In other words, the points (x,, y,) and (x,, y,) lie on the same side or opposite sides
of the line ax + by + ¢ = 0 according as ax + by +cand ax,+ by, + ¢ have the same or
opposite signs.

Note : For a vertical line we do not have the concepts of ‘above’ or ‘below’. However the half-
planes corresponding to such line can be designated as ‘right’ or ‘left’. We now define
these concepts for all but horizontal lines.

Consider a nonhorizontal line L, given by : ax + by + ¢ = 0 and a point P (x, y).
Let a line through P(x,, y,), parallel x - axis, intersect L at the point (x, y,).

We define : AY
(1) P(x,, y,) is to the right of L
ox >xie.x, —x>0. ‘\().C’yl) P.(xl’yl)
1 1 < ]
(2) P(x,. ) is to the left of L N
ox <xle.x —x<0. L
Since (x, y) e L, ax + by, + ¢ =0. X
0 A
= — by te (a # 0, as L is nonhorizontal)
ax; +by, +c¢
Therefore x, —x = -
ax; +by) +c

So P(x, y,) is to the right or left of the ling ax + by + ¢ = 0 according as

Is positive or negative i.€. ax, + by, + ¢ has the same or opposite sign as that of a.
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The origin is to the right or left of the line ax + by + ¢ = 0 according as ¢ and a have the
same or opposite signs.

As before it can be proved that the points (x,, y,) and (x,, y,) lic on the same or opposite
sides (right, left) of ax + by + ¢ =0, according as ax + by, + ¢ and ax, + by, + ¢ have the
same or opposite signs.

Note : For a horizontal line we do not have the concepts of ‘right’ or ‘left’. For oblique lines both the
concepts, ‘right and left’, ‘above and below’ are valid.

Coming to the main result, let P(x , y,) be a given point and ax + by + ¢= 0 be a given
line L. Draw a line L, through P parallel to L. Let p and p, be distances oflines L and L, from
origin, respectively. If origin lies on the same side of L and L, then the distance between them
isd=|p—p,|, and if origin lics on opposite sides of Land L , thend =|p + p |

Y

\\ |

d- L
PNERA
P °

L L) X £ P,
X’ < o \&Jﬁ‘x P(ﬂy‘%‘< © \
Vyf \
Y

We know from ‘normal form’ that the distance of origin from the line L : ax + by + ¢ =

0, is p= ——=—, with proper choice of the sign of the radical g2 +p2 soasto

+Va’ +b°
make p positive.

Since L is parallel to L, equation of L, can be written as ax + by + ¢, = 0.
. - —C
P = ﬁ
But cand ¢, have the same or opposite signs according as the origin lies on the same

side or opposite sides of L and L,. (i.c. origin is to the left/right or origin is above/
below of both L and L))



Straignt Lines 261 |

—C —C
Therefore (I) p=—pF——=, p =———,ifthe originis on the same side of L and L and
w0 P a1 ‘

if the origin is on opposite sides of L and L .

— _Cl
) p= ———.p = —F——,
+Va® +b° b oma? +b?
[If origin lies on the same side of Land L, i.e. ¢ and ¢, have the same sign, we have to choose

—C

+Va® +b?

—C cpe s e .. R
and p = ﬁ to mean that if *+’ sign is chosen for the radicalin case of p then “+’ sign

the same sign for the radical to make bothp and p, positive. Therefore we write p =

is also chosen for the radical in case of p, and , if - sign is chosen for the radical in case ofp
then °-’ sign is also chosen in case of p,. But if origin lics on opposite sides of L and L , in
which case ¢ and ¢, have opposite signs, opposite signs for the radical have to be chosen to
make both p and p, positive i.e. if we choose “+ sign for the radical in case of p then we
choose ‘—’sign for the radical in case of p, and viceversa. To indicate this mode of choice of *+’
. . — - . e e . .
and ‘" signs we write p=————— and p, = ———"; in case the origin lies on opposite
+Va? +b? bosa? +p?
sidesof Land L ]
(x,,y)el =ax +by +¢ =0=c = —(ax + by).

‘ —C _ A |
‘i\/a2+b2 i\/a2+bz|

Incase,d= |p—p|=

_ ‘—axl —by,—c

’ +va® +b°

_ lax, +by; +c|

Va® +b°

’i a -l—b2

Incasell,

d=|p+ |=‘ = E— ‘=
PR \i\/ﬁ :m\

—C I €
i\/az +h? i\/az +b?

_ ‘—axl —by,—c
’ i\/a2+b2

_|ax; +by, +¢
\/a!2 +b°

Thus, inany case, the distance ofa point P(x, y,) fromthe line L : ax + by + ¢ = 0 is given

|axy +byy +¢|

by d=
a® +b?
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Applications :
Equations of bisectors of angle between two (intersecting) Lines

Let the two given lines be L, and L, and the two bisectors be B, and B, (Fig. 20). Suppose L,
and L, intersect at A. Let the equations of L and L, be,

ax+by+tc =0
ax+by+c,=0
respectively. Consider a point P (x, y) on the bisector B,.

Drop perependiculars PN and PNoon L, and L, rspectively. Then tirangles APN, and
APN, are congruent. Hence, PN, = PN,

N lapx+by+¢|  |agx+byy+o| = apx+bhy+e _ N a,x+b,y+c,
/alz +b12 = /a22 +b22 /alz +b12 /azz +b22

are the equations of the two bisectors.

Note : Out of the two bisectors, one which makes an angle measuring less than 45° with any
of the intersecting lines, is the internal bisector. Thus if 6 is the angle which one¢ of the
bisectors makes with any one of the lines, then [tan 6 | < 1, gives the internal bisector i.e.
bisector of the acute angle between the lines L and L,.

Bisector of the angle containing a given point (h, k) in its interior,

Actually bisector of an angle is a ray. However, by ‘bisector of angle between two
intersecting lines’, we mean the union of two opposite rays which bisect two opposite
angles formed by the intersection of the lines. Therefore, in case of two intersecting
lines, we get two lines, (obviously perpendicular to ecach other) as the bisectors of the
angles.

Therefore, the bisector of the angle containing (h, k) in its interior, is a union of
two opposite rays, their common vertex being the point of intersection of the given inter-
secting lines. One ray bisects the angle containing (h. k)in its interior, the other ray
bisects the oppsite angle.

Let the equations of two lines L and L, be givenas L, @ ax+ by + ¢ =0,

L,:ayx+ byy+cy,=0.
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To obtain the equation of the bisector of the angle containing (h, k) in its interior, proceed
as follows :

I. First seeifa h+b k+c and a',h+ b'; k+c', have the same or opposite signs.
2. (1) Ifthey have the same sign, write a, = a,' ,b, = b,', ¢, = ¢, .
(11) If they have opposite signs, write a, = —a,' ,b, ==b,", ¢, = —c,".
3. Write the bisector of the angle containing (h, k) in its interior as :
ax thyt+¢q _ mxthyto

\/alz + b12 \/azz + b22

Justification of the Procedure :

After the second step, we can write the equations of L and L as:

L:ax+b y+tc=0andL,: ax+b,y+c,=0, suchthat ah+b k+c andah
+ b, k + ¢, have the same sign. [obviously none of a s +b k+c andah+b k+c, is
zero, since (h, k) e interior of an angle between L and L, = (h, k) ¢ L and (h, k)¢ L,.
An angle and its interior are disjoint sets. |

If P (x, y) € the ray, bisecting the an-
gle containing (h, k) in its interior,

then (x,y) and (A, k) are on the same
side of L, as well as L,. So the pairs of
numbers ax +b y+c ,ah+b k+c and
ax+b y+c, ,ah+ b k+c have the
same sign.

Since a h+ b k+cand ah+ b, k+ c have the same sign, it follows thata x +5 y + ¢
and a,x + b, y + ¢, have the same sign.

.. From the equations of bisectors, we get

laix + by + ol _ laygx + by + o
\(alz + b12 1}022+ b22
:a1x+b1y+cl _ mx T hy t g (A)

’a12+ b12 a22+ b22

If P (x, y) € the ray bisecting the angle, opposite to that containing (%, k) in its
interior, then (x, y) and (%, k) lie on opposite sides of L, as well as L,. So the pairs of
numbersax+b y+c ,ah+b k+c andax+b y+c,, ah+b k+c, have opposite
signs. But sincea h+ b k+c and ah+ b k+c, have the same sign, it follows that a x
+b y+c and ax+ b, y+c, have the same sign. Therefore,
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la)x + by + ¢ _ |agx + by + ¢
0'12 + b12 \/6122 + b22

al)C+b1y+C1 _ a2x+b2y+c2

T B
Tt et )

(A) and (B) imply that
the Dbisector of the angle, containing (h, k) in its interior, is given by

ax + byt ¢ _ axtbhyto

ﬂalz + b12 \/6122 + b22

the same sign.

,provided ah+b k+c andah+b, k+c, have

Corollary : Bisector of the angle, not containing (h, k) in its interior, is given by

apx + by + ¢ ax + by + ¢

= (=) :
/alz N b12 /azz N b22 , provided a h +b k+c and

a,h + b, k + ¢, have the same sign.

Example 15 :
(1)  The length of the perpendicular drawn from the point (0, 0) to the line 2x — 3y —3 =0,

(i) The length of the perpendicular from the point (1, 1) to the line3x —y + 1 =0, is

Mol _ 3
N (—1)2‘ Vio®

|
d=
|

(iii) The distance between two parallel lines
2x+y—-3=0, 4x+2y-1=0,1s

()
NG

= % = 75 [ Notice that the origin lies below both the given lines. So, the

d= (dividing equation of second line by 2)

distance between these parallel lines is the absolute value of the
difference of their distances from the origin.|

(iv) The distance between the two lines 2x +y—3 =0, x+2y—7 =0, is zero as the lines
are intersecting.
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(v)  Find the distance ofthe point (-2, 3) from the line x — 3y — 2 =0, measured parallel to
the line 2x +y—1=0.
Let L be a line through the point (-2, 3) and parallel to the line 2x +y—1 =0. (D)
Then slope of L, is m =— 2, and hence its equationisy—3=-2 (x +2)
or,2x +y+1=0.
2)
Now the point of intersection of x -3y —-2=0 (3)

with (2) is given by x =— % andy= — %

Hence, the distance of the point (-2, 3) from the line x— 3y —2 =0, measured parallel to 2x +

v—1=01is the distance between the points (-2, 3) and (—% - %) ,1.¢.

o= o4 (3 - 2

(vi)  The equations of bisectors of the angles between the linesx+ 2y —1=0 and 4x
+3y+1=0,are

x +2y -1 _ +4x+3y+1
NG - 5
or, V5 (x+2y—1)= +(dx+3y+1),
or,i.c. (4+V5)x+ B +2¥5)y+ (1 -5 =0,
and, (4—-V5)x+ (3-2V5x +(1+5)=0.
Pair of Straight Lines
Consider the equation, x* —)*=0
which can be written as (x —y) (x+y) =0.
The co-ordinates of any point on the line x—y =0, or x +y =0, satisfy the equation (i). Hence
the equation (i) represents a pair of lines, x—y=0and x+y=0.
Consider the equation ax® + 2hxy + by* =0

)

which is a second degree homogeneous equation in x and y. This can be written as

2
B2 | +2n[ L] +a=0
2 X

Y

which is a quadratic in o This gives
1172 [72
Y o 2h 4 gé’ —dab _ —h £ g —ab (considering b +0)
X

b

—h +Vh% —ab —h —\h* —ab
or, y = x,andy = b X,
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which represents a pair of lines through the origin, with slopes

my = {—h + Vi —ab]

b
\
- [—h —h? —ab]
2 b

provided #* > ab.

If 2 > ab, the lines are different and if h? = ab, the lines are coincident, since their

equations are identical in this case.

We have m, +m, =— Zb_h and m m, = %. So lines are perpendicular Whepz)a +b=0.

Similarly, if we consider a pair of lines through the origin given by y = m x, and y =mx,
then their combined equation is (y — m x) (y —m,x) = 0

ie,y —(m +m)xy +mm,x*=0

which is a homogenecous second degree equation in x and y.

Thus, every homogeneous equation of second degree in x and y i.e. ax? + 2hxy +
by? = 0 represents a pair of lines through the origin if #* — ab > 0 and conversely.

Now consider the pair of lines represented by ax? + 2kxy + by? =0 . Their slopes are
given above in (2) . If the lines are not coincident (i.e. #* — ab > 0) and 6 measures an
angle between them, then

my —my
_ |+ 72
9—nn+tanl(— 1+m1m2) 3)
n € z being chosen so that 6 € (0, n).

It will be proved in chapter — 10 (art 10.5) that the quadratic expression ax* + 2Axy + by?
+ 2gx + 2fy + c can be factored into first degree ploynomials under the condition abc
+ 2 fgh — af* —bg*—ch* =0.

The factor polynomial have real coefficients when a =5 = 0. But when
(i) a =0, the factor - polynomials have real coefficients if A* = ab and g* = ac
(ii) a =0, but b # 0 then the factor - polynomials have real coefficients if

f? = be.

Therefore ax* + 2hxy + by* +2gx +2fy+c =0 (4)

represents a pair of lines under the conditions :

abc + 2 fgh — af* — bg* —ch* = 0 and
(i) h*>ab g@>acifa#0
(i) f*>bcifa=0,butdb=0.

If the lines represented by (4) are intersecting and 6 measures the angle be-

tween them, then it can be shown by considering the linear factors of the quadratic
expression that

[2
tan 0 = + % . The lines will be perpendicular if « +b5 =0, and
a
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if h* =ab, it can be shown that the lines are parallel.

Example 16 :

Find the value of & for which, the equation (k—3)x*+4xy + y*=0 represents a pair of
lines perpendicular to each other.

By condition of perpendicularity, the equation will represent a pair of perpendicular lines,
if (k—3)+1=0,0rk=2.

Example 17 :

Obtain the equation of the pair of lines which are perpendicular to the pair oflines ax?
+ 2hxy + by* = 0 and pass through the origin.

Let the pair of lines represented by ax® +2hxy + by*=0bey =m xandy = myx.

Then the pair of lines through origin, perpendicular to these two have slopes — L and-

m
1 , and their equations are y = _L xand y= L X.
ny m 1)
Hence the combined equation is ( v+ 1 x)( y+ 1 x) =0
my my
or, (m m)y*+(m +m)xy+x*=0
of, (%) Vv o+ (%h)xy +x2=0
or, ay* — 2hxy + bx*=0.
Example 18 :
Show that the equation ofthe pair of bisectors of the angle between the pair of lines, ax? +
2 2

2hxy + byt =0is L =V - W

R a—b h
Let the pair of lines be y=m, x and y = m x.
Then, m +m,=— Zb_h and m m, =%.
The equation of pair of bisectors form x —y=0and m,x - y=0
g TMXTY _  TRXy

\/m12+1 1/1+m22

mx-—y mx—y mx-—y mY—J -9

whose combined equations is - +
Y1 mlz \/1+m22 \/1+m12 \/l+m22
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which on simplification gives = —2 = X

a->b h

11.5 Change of Axes (Shifting of origin)

The origin and the axes in a co-ordinate system are chosen arbitrarily. In two different

co-ordinate systems, the co-ordinates of a point are different. If the equation ofa curve in one
co-ordinate system (S) is known, then its equation in the second co-ordinate system (S') can
be determined provided there is a relation between the co-ordinates of the two systems; and
this is studied under the transformation of co-ordinates :

Here, we consider the transformation of co-ordinates in the following two cases :

(a) The origins O and O’ of the systems S and S’ are different but the respective co-ordinate
axes of the two systems are parallel.
(b) Systems S and S’ have the common origin. The x'— axis of S is the set of points with
polar co-ordinates (», @); r € R and « fixed; with respect to origin as pole and positive
x —axis of S as the initial ray. [the set of points with polar co-ordinates (r, o), r € R and
o fixed, can be easily seen to be a line. |
In (a), the co-ordinate system S’ is called a translation ofthe system S. In (b), the system
S'is called a rotation of the system S; |0 being the measure ofrotation. The rotationis said
to be be*anticlockwise’” or “‘clockwise’ according as o > 0 or o <0.
The following two theorems give the formulae for transformation of coordinates of one
system into another.
Theorem
(1) O’ (h, k) is the origin of the system S’ with respect to the origin O (0, 0) of the system S.
(i)  S'is the translation of S.
(i)  (x,») and (x', y") are the co-ordinates of a point P in system S and S’ respectively.
=>x'=x-hy=y-k Ay oy
Proof :
From the Fig. 21 we note that N N’ P
X =NP=NP-NN'=x-4,
3y = M'P=MP - MM =y -k. M’ >
This completes the proof of the O (h, k)
theorem.
0 >

(0,0) M
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Example 19 :
Transform the equation : 2x*+ 3)*—8x +8y—34=0
when referred to parallel axes through the point (2, -3).

Solution :

Here : h=2k=-3=0x=x"+2,y=)"-3

and the equation of the curve in terms of x’, ' becomes 2 (x" +2)*+ 3 (' — 3)?
-8 (' +2)+8(0'-3)-34=0.

This after simplification becomes 2x* + 3y* = 39;

dropping the primes n. Therefore the given equation represents an ellipse (art. 8.18) which is
difficult to recognize unless we make use of the transformation (i).

Theorem
(1) S’is arotation of S
(i) o is the measure of rotation.
(iii) (x,y) and (x’, y") are the co-ordinates of a
point P with respect to S and S".
= x=x' cosa—)' sin o and
y=Xx'sin o +)' coso.
Proof : ' 2\

\ p
From the Fig, 22 \ 5
x=0OM=0B- MB=0B-AM/,

OB=0OM'cos a =x"cos a.
AM'=PM’'sino =)' sina .
Sox=Xx"cosa—) sina. M
Similarly it can be shown that

y=x"sina+) cos aand with X'« 5 R
this the proofis complete.

N.B. These formulae for transformation of coordinates hold for all o such that 0 < <2m,
Corollary (1) IfS'isroation of S with measure of rotation o then
X'=xcosa+ysinao, Y =y Coso—Xxsina.

Corollary (2) IfS' is a combination of a translation followed by a rotation (c. being the measure of
rotation) thenx =% + x' cos . — ' sin o, y =k + x’ sin oo + )’ cos a.

Example 20 :

How should the axes be rotated so that the transformed equation of
ax’* + 2hxy + by* =0
shall have no xy term ?
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Solution :

The transformed equation will not contain x'y" — term if its coefficient is zero.
Now, under the transformation :

x=x"cosa—y’'simno,y=x"sina+)y cosa,

0 = ax*+ 2hxy + by?

=a (' cosa—) sina)*+2h (x' cosa—y sina) (x' sina+ )" cosa)

+ b (x' sin o + )’ cos a)?

= (eeeerrann W+ (e, )y + (—asin 2o+ 2h cos 2o+ b sin 2a) x'y’; and if the
transformed equation does not contain x’y’ — term then we must have :
(b—a)sin2a+2hcos2a=0

_ _2h L -
= tan 2o = oyl n2+2tan PR

EXERCISES 11 (b)

1.  Fillin the blanks in cach of the following, using the answers given against each of them: :
(a) The slope and x - intercept of the line 3x —y + k=0 are equal if k = —

(0,-1,3,-9)
(b) The lines 2x — 3y + 1 =0 and 3x + ky — 1 =0 are perpendicular to each other if k=—
o (2,3,-2,-3)
(¢) The lines 3x + ky—4 = 0 and k— 4y — 3x = 0 are coincident if k = —
(1,-4,4,-1)

(d) The distance between the lines 3x — 1 =0 and x + 3 =0 is —— units. (422%)

(e) The angle between the linesx =2 and x— /3y +1=101is — (30°, 60°, 120°, 150°)

2. State with reasons which of the following are frue or false :
(a) The equation x = £ represents a line parallel to x - axis for all values of k.
(b) The line, y + x + 1 = 0 makes an angle 45° with y - axis.

(c) The lines represented by 2x — 3y + 1 = 0 and 3x + 2y — k = 0 are perpendicular to
each other for positive values of & only.

(d) The lines represented by px + 2y — 1 =0 and 3x + py + 1 = 0 are not coincident for
any value of p.

(e) The equation of the line whose x — and y — intercepts are 1 and — 1 respectively is x
—y+1=0.

(D  The point (-1, 2) lies on the line 2x + 3y — 4 = 0.

(g) The equation of line through (1, 1) and (-2, -2) is y = — 2x.

(h) The line through (1, 2) perpendicularto y=xisy +x -2 =0.
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(i)  The lines % +% =1land % - % = 1 are intersecting but not perpendicular to each other.

() Thepoints (1, 2) and (3, —2) arc on the opposite sides of the line 2x + y=1.

A point P (x, y) is such that its distance from the fixed point (o, 0) is equal to its distance from

vy — axis. Prove that the equation of the locus is y* = a (2x —a).

Find the locus of the point P(x, y) such that the arca of'the triangle PAB is 5, where A is the

point (1, —1) and B is the point (5, 2).

A point is such that its distance from the point (3, 0) is twice its distance from the point (-3, 0).

Find the equation ofthe locus.

Obtain the equation of straight lines :

(a) passing through (1, — 1) and having inclination 150°,

(b) passing through (-1, 2) and making intercept 2 on the y — axis.

(¢) passing through the points (2, 3) and (-4, 1).

(d) passing through (-2, 3) and sum of whose intercepts in 2.

(¢) whose perpendicular distance from origin is 2 such that the perpendicular from origin has
inclination 150°,

(f)  bisecting the line segment joining (3, —4) and (1, 2) at right angles.

(g) bisecting the line segment joining (a, 0) and (0, b) at right angles.

(h) biscting the line segments joining (a, b), (a', b') and (—a, b), (a', - b"),

(1)  passing through origin and the points of trisection of the portion of the line 3x+y—12 =
0 intercepted between the co-ordinate axes.

(j) passing through (—4, 2) and parallel to the line 4x — 3y = 10.

(k) passing through the point (a cos’0, a sin*0) and perpendicular to the straight line X
secO + y cosecH = a.

(D which passes through the point (3, —4) and is such that its portion between the axes is
divided at this point internally in the ratio 2 : 3.

(m) which passes through the point (a, ) and is such that the given point bisects its portion
between the co-ordinate axes.

(a) Find the equation of the lines which is parallell to the line 3x + 4y +7 =0 and is at a
distance 2 fromit.

(b) Find the equations of the diagonals of the parallelogram formed by the lines ax + by =0,
ax+ by +c=0, [x +my=0and Ix + my + n=0. What is the condition that this will be
arhombus ?

(c) Find the equation of the line passing through the intersection of 2x —y—1=0 and 3x —
4y + 6 = 0 and parallel to the line x + y —2 = 0.

(d) Find the equation of the line passing through the point of intersection of lines x + 3y +2 =
0 and x — 2y —4 = 0 and perpendicular to the line 2y + 5x — 9= 0.

(e) Find the equation of the line passing through intersection of the linesx +3y—1=0 and 3x —

v+ 1=0and the centroid of the triangle whose vertices are the points (3, —1), (1, 3) and (2,
4).
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IfIx+my+3=0and 3x—2y—1=0represent the same line, find the values of/ and m.
Find the equation of sides of the a triangle whose vertices are at (1, 2),(2, 3) and (-3, -5).
10.  Show that the origin is within the triangle whose sides are given by the equations, 3x—2y=1, 5x
+3y+11=0andx—7y+25=0.
11. (a) Find the equations of straight lines passing through the point (3, — 2) and making angle
45° with the line 6x + 5y =1.
(b) Two straight lines are drawn through the point (3, 4) inclined at an angle 45° to the linex—y
—2=0. Find their equations and obtain the area included by the above three lines.
(c)  Show that the area of the triangle formed by the lines given by the equationsy =m x+c,,
_ _il (e —cy)’
y—1112)c+022111d)c—()ls2 gy —my] °
12. Find the equation of the lines passing through the origin and perpendicular to the lines 3x + 2y
—5=0 and 4x + 3y = 7. Obtain the co-ordinates of the points where these perpendiculars
meet the given lines. Prove that the equation of line passing through these two points is 23x +
11y -35=0.
13. (a) Find thelength ofperpendicular drawn from the point (-3, —4) to the straight line whose
equation is 12x— 5y + 65 =0.
(b)  Find the perpendicular distances of the point (2,1) from the parallel lines 3x— 4y +4 =0
and 4y — 3x + 5= 0. Hence find the distance between them.
(c) Find the distance of the point (3, 2) from the line x +3y — 1 = 0, measured parallel to the
line 3x—4y+1=0.
(d) Find the distance of the point (—1, —2) from the line x + 3y —7 = (0, measured parallel to
the line 3x + 2y —-5=0.
(¢) Find the distance of the line passing through the points (a cos «, a sin o) and (a
cos B, a sin ) from the origin.
14. Find the length of perpendiculars drawn from the origin on the sides of the triangle whose
verticesarc A(2, 1), B(3,2)and C (-1, -1).
. . [ 2 2 . .
15.  Show that the product of perpendiculars from the points (i a“-b 50) upon the straight line
X cosd + 3 sind =1, is b7,
a b
16. Show that the lengths of perpendiculars drawn from any point of the straight line 2x+ 11y -5
= 0 on the lines 24x + 7y — 20 =0 and 4x — 3y — 2 = 0 are equal to each other.
17. 1Ifp and p’ are the lengths of perpendiculars drawn from the origin upon the lines x sec o + y

cosec oo —a = 0 and x cosa —y sin o —a cos2 o = 0, prove that 4p? + p? =a’.
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Obtain the equation of the lines passing through the foot ofthe perpendicular from (#, k) on the
line Ax + By + C =0 and bisecting the angle between the perpendicular and the given line.

Find the direction in which a stright line must be drawn through the point (1,2) such that its
point of intersection with the line x +y —4 =0, is at distance %\/E from this point.

A tringle has its three sides formed by the lines x + y =3, x + 3y =3 and 3x+ 2y = 6. Whithout
solving for the vertices, find the equation of its altitudes and also calculate the angles of the
traingle.

A tringle has its vertices at P(1, —1), Q(3, 4) and R (2, 5). Find the equation of altitudes
through P and Q and obtain the co-ordinates of their point of intersection. (This point is
called orthocentre of the traingle).

(a) Show that the line passing through (6,0) and (-2, —4) is concurrent with the lines
2x —3y—11=0and 3x — 4y = 16.

(b) Show that the lines Ix + my + n =0, mx + ny + [ =0 and nx + Iy + m = 0 are
concurrent, if / + m +n = 0.

Obtain the equation of the bisector of the acute angle between the pair of lines :
(a) x+2y=1,2x+y +3=0;
(b) 3x—-4y=5,12y-5x=2.

(a) Find the co-ordinates of the centre of the inscribed circle of the triangle formed by
the line x cos a + y sin a = p with co-ordinate axes.

(b) Find the co-ordinates of the circumcentre and incentre of the traingle formed by
theline3x —y=5,x+2y=4and 5x + 3y +1=0.

The vertices B, C of a triangle ABC lie on the lines 3y = 4x and y = 0 respectively and
the side BC passes through the point (2/3, 2/3). If ABOC is a rhombus, where O is the
origin, find the equation of BC and also the co-ordinates of A.

Find the equation of the lines represented by the following equations :

(@) 4x*—y*=0 (by 2x*-5xy-3y"=0

(c) x*+2xysecH+1*=0 (d) 3x*+4xy=0.

Form the equations which represent the following pair of lines :

(a) y=mx,y=nx b)) y-3x=0;y+3x=0

() 2x-3y+1=0;2x+3y+1-0 d x=y,x+2y+5=0.

Which of the following equations represent a pair of lines ?

(a) 2x*—6+3x+y+1=0 by 10x* —xy—6y"—x+5y—-1=0
(c) xy+x+y+1=0.

For what value of & do the following equations reprsent a pair of straight lines ?
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@) Axr+5xy—-2P—8x+5y —A=0 (b) x*—4dxy—y*+6x +8+A=0.
30. (a) Obtain the value of A for which the pair of straight lines represented by 3x*— 8xy + 1)?
= 0 are perpendicular to each other.
(b) Prove that a pair of lines through origin perpendicular to the pair of lines represented by
px*+2gxy + ry* =0is given by rx* — 2gxy + p)* = 0.
(¢) Obtain the condition that a line of the pair of lines ax? + 2hxy + by* = 0 (i) coincides with,
(ii) is perpendicular to, a line of the pair of lines px* + 2gxy + r* = 0.
31. Find the acute angle between the pair of lines given by :
@A) xX*+2xy-4y"=0 (b)) 2x*+xy-3*+3x+2y+1=0
(c) xX*+xy—6—x—-8y—-2=0.
32. Write down the equation of the pair of bisectors of the followingn pair of lines :
(a) x*—)y*=0 (b) 4x*—xy-3y*=0
(¢) x*cosb+2xy—)?sinb=0 (d) x*—2xytanb—)*=0.
[Hint : Use the formula that the equation of bisectors of angles between the pair of lines ax* +
2hxy + by*=01is x? -2 = ﬂ]
a—b h
33. Ifthe pair oflines represented by x> — 2pxy — y* = 0 and x* — 2gxy — y* = 0 be such that each
pair bisects the angle between the other pair, then prove that pg=—1.
34. Transform the equation
x*+y*—2x—4y+ 1 =0 by shifting the origin to (1, 2) and keeping the axes parallel.
35. Transformthe quation
2x*+3y* + 4xy — 12x — 14y + 20 = 0, when referred to parallel axes through (2, 1).
36. Find measure of rotation so that the equation
x* —xy +y* =5 when transformed does not contain xy - term.
37. What does the equation x + 2y — 10 = 0 become when the origin is changed to (4, 3) ?
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Conic Sections
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12.0 Introduction

(Ellipse)

(Parabola)

(Hyperbola)

(Circle)

Sections of a Cone :

When a plane cuts a cone, we get various types of plane sections depending upon the positions
of'the plane. As shown in the figures above, we get curves known as parabola, elipse, hyperbola and
also circle. There are cases when we even get a single point (when the plane passes only through the
vertex of the cone); a pair of lines when the plane passes through the axis of the cone which hapento
be two generators of the cone intersecting at the vertex.

The parabola, ellipse and hyperbola are called the main conic sections. They have well defined
directrices, which will be defined later in the chapter. But directrix ofa circle is not defined. For this
reason, though a circle comes as a section of a cone when the axis of the cone is normal to the plane
cutting it. A circle is, however, called a conic section of the fourth type.

Since cone is beyond the scope ofthis book we develop the geometry of circles and all other
conic sections independent of the properties ofa cone.
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12.01Circle :

Definition : Acircle is the set (locus) of all points in a plane which are equidistant from a given point
in that plane.

The given point is called the ‘centre’ of the circle. A linesegment joining the centre to a
point on the circle, as well as its length, is known as the ‘radius’ of the circle.

Note that the term ‘radius’ means both a segment and its length. Its meaning will be clear
from the context.

Equation of Circle with given centre and radius :

Y
Let C (A, k) be the centre of the given circle and r be its ? P(x,y)
radius. Then for any point (x, ) on the circle (Fig. 23)
we have, CP2 =2

or | (x=m? +(y—k)? =#2 (1)

which is the required equation.  In particular, if we >

put 2 =0 and k= 0 then equatin (1) reduces to, O X
x2 n y2 _ r2 2)

which is the equation of'a circle with centre at origin and radius r.
Note I : If the centre of the circle be C (h, k) and radius be r and if it touches the x - axis at M, then

YA Ay Ay
N
\C(h, k)
X —p
O M O ’X O M X

k= CM = r and the equation of the circle is (x — #)* + (y = k)*=k*
or, x2 + y? — 2hx — 2ky + h* = 0.

(IT) Similarly, if the above circle touches y - axis at N. (fig. 25), then # = CN =r and the equation
of circle becomes.

(x=hy?+@—-FkyP=hor, x>+ y*=2hx - 2ky + k*= 0.
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(II) Ifthe above circle touches both the axes at M and N (Fig. 26), then
CN = h=k=CM = r, and hence the equation of circle becomes,
(x—hyY+ (@ —h)?*=h*or,x* +y*=2hx—-2hy+ h*=0.
Circle on a given diameter :
Let A(x,,y,) and B (x,, y,) be the end

points of a given diameter of a circle. Then for B(x,,y,)
any point P (x, y) on the circle (fig. 27), we

have mZAPB = 90° i.c. PA and PB are A
pgpendlcular Eg each other and hence, (slope (X.y)

PA). (slope PB)=—-1 P(x,y)
Y= Y—r2\
or, x—x1 ) \x—xp =-1

or, | (x —x )(x —x7)+(y—y (¥ —»2)=0] is the equation of the circle.

General Equation of a Circle : Conditions for the General Equation of second degree to represent
acircle.

As discussed earlier the equation of the circle with centre at (4, k) and radius 7, is given by, (x
-+ W-k?*=r
or, x> +y*=2hx—=2ky + (W*+ kK —-r*) =0
which is of the form x*> +y* + 2gx + 2fy + ¢ = 0.

Conversely, if we consider an equation of the form x? +? + 2gx + 2fy + ¢ =0 then it can
be written as, (x* +2gx+g?) + (*+ 2y + ) =g +f*—¢
or, x +g)*+(y+ /)= (g + [ -0
which represents a circle with centre (— g,—/) and radius r= | g + 12 — ¢, provided g* + f*>c.
Ifg+/<c,r=, g2 + f2 — ¢ becomes imaginary and is not acceptable as a distance since

‘distance’ s a function from R x R onto the set of nonnegative real numbers.
If g* +f* — ¢ =0, the circle reduces to a point.
Ifa=b=0, h=0the equation ax* + 2Axy + by* + 2gx + 2fy +c =0 can be written as x?

+)y* +2gx+2fy+c =0; where g = %,fl = %, c, = %. It represents a circle
if g?+f?>c i-e. g+ f >ac.

Thus we see that the general equation of second degree inx and y i.e. ax* + 2hxy + by?
+2gx + 2fy + ¢ = O represents a circle subject to

a=b#0,h=0,g"+/f*>ac.

Position of a point with respect to a Circle.

Let S (a, B) be a given point and x* +1* + 2gx + 2fy + ¢ =0 be a given circle. Thenthe  co-
ordinates of the centre C of the circle are (—g, — f). The point S will lie outside the circle if CS
> r; on the circle if CS = and inside the circle is CS < r. But
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r=yg?+f*—c and CS?=(a+g)’+(B+/7

Hence the point S will be outside, on or inside the circle, according as, CS* > = <r?

le(at+tg)+B+)>=<g+f-c

i.e.o®+p>+2g0 +2fB+c>=<0.
12.02 Equation of Tangent and Normal

Let P be a given on a curve and Q be any
other point on it. Then the line segment P() is called
a chord of the curve. As Q tends to P. i.e. we take
Q closer and closg to P on the curve, then in the
limiting poistion PQ assumes the position PT and
is called the tangent line or simply fangent to the
curve at the point P. A line through P, perpendicular /"’
to the tangent, is called w

the normal to the curve at the point P. [Since the concept of tangent involves limiting case it is
best tackled in differential calculus]

Consider the circle given by the general
equation.

x2+)yP+2gx+2fytec=0
and let P (x, y)) be a point on it. If C is the
centre of the circle then the co-ordinates of C
are (—g — /) and hence the slope of CP is
n+/S
X +g
circle is perpendicular to the line joining the
point of contact to its centre, the slope of the

. Since the tangent at any point to a

X +g
n+Sf
equation of tangent through (x,, y ) is given
by,

tangent at P is given by — ( J ; hence the

0=y = oy )

o, y—y) (W, tN+(x +g (x—x)=0
or, yy, +fy +xx, +gx—y? -yf-x’ —grx =0
0r,xx1+yyl+gx+]j;=x12+y12 +gx, [y,
=(x 2+ +2gx +2fy, + o) - (gx, +/y, + o).
Sinc;e, P(x,y)is gpoint on the circle, we have,x *+y >+ 2gx +2fy +c=0. Hence
the equation of tangent is xx, + yy, + gx+fy=—(gx, + fy, + )

or, | xx; +yy+g(x+x)+ f(y+y)+c=0
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In particular, if we have the circle x* +)? = %, then substituting g=/=0and c =—*in
the above equation, we get the equation of tangent at (x , y,) as xx +yy, —r*=0

or, | xx1 + WV 27’2

To get the equation of normal, we see that the slope of tangent to the circle
X+ +2x +2fy+c=0

X1 +g
at the point (x, y ) is — J’lle , and hence the slope of normal to the circle at (x,y))

+ +
3;11 +£. So the equation of normal at (x,y)is,y -y, = J;11+£
Orz (yfyl) (x1+g)=(y1 +j)(x7x1)
Or, |[Oh +H)x-(n+gy —xf+yg=0

Ifinstead, we have the circle x*+ ) =72, then subsituting, g = /= 0 in the above equation
ofnormal, we get the equation of normal at (x, y) as,

is (x—x)

X1y = X1

12.03 Length of tangent drawn from an external point (x,, y ) to a given circle
Let P (x, y)) be a given point and x>
+y?+ 2gx + 2fy+ ¢ = 0 be a given circle.
Then the centre C of the circle has co-
ordinates (—g, — f) and radius r =

M
Vet +ri-c. /

If we draw a tangent to the circle

from the point P and if M be the point of

contact then PM = length of tangent drawn

from P. Further, triangle PMC being a right

angled triangle, we have, PC? = PM?* +

MC?

or, PM? = PC* — MC? P Xv y)
=(x, T+, tN =@t/ -0
=x’+y’+2gx +2fy +c

or PM = \/xlz +yl2 +2gx; +2fy; +c-

12.04 Points of intersection of a line and a circle and condition of tangency
Consider the circle given by the equation x* +)? =a?, (1)
and the straight line, y =mx + c. (ii)

At the point of intersection of the circle and the straight line, both the equations (i) and (ii)
will be satisfied. Hence the points ofintersection are found out by solving (i) and (ii). Now
eliminating y from (i) and (ii) we obtain, x* + (mx + c)*=a*
or, (1 +m?) x* + 2mex + (c*—a*) =0 (iii)



[280

Llements of Mathematics, Vol- 1 |

N.B.

which is a quadratic in x and therefore has two roots, real and different, real and equal, or
complex. Hence the straight line (ii) meets the circle (i) in two distinct or coincident points if the
roots of equation (iii) are real; otherwise it does not meet the circle. The coordinates of the
points at which it meets the circle are (x , y) and (x,, y,), where x , x, are root of the equation
(iii) and y , y, are the corresponding values of y.

Now, the line (ii) will be tangent to the circle (i), if it meets the circle at two coincident
points, i.e. if the two roots of (iii) are real and equal, i.e. if the discriminant of (iii) is zero, i.e.
4m’c*— 4 (1 + m?) (¢*—a?) =0,

or, m’c’ — (¢* —a* + m’c?—m*a?) =0

or, | F=a*(1+m?)

1. It follows that

(i) c?*<a*(1+m?)<theline y =mx + cis a secant of the circle x? + y? = a* i.¢. intersects
the circle at two distinct points.

(i) c*>a* (1 + m*)< the line does not intersects the circle.
2. The equation y = mx ta~v1+m” always represents a tangent to the circle x? + y? =

If we consider the general equation of the circle, x* +)? + 2gx + 2fy + ¢=0 (iv) and
the line is given by Ix +my+n=0..............cceee. (v)

then the points of intersection of the line and the circle are obtained by solving (iv) and (v).
Now eliminating y from (iv) and (v) we get,

_lx_n 2 —lx—l’l
X2+ - + 2gx + 2f +c=0

m

or, m*x* + (Ix + n)* + 2gm*x — 2mf (Ix + n) + m*c = 0 (supposing m # 0)

or, (m*+ I?) x* + (2In + 2gm* — 2flm) x + (n* + m*c—2fnm) =0 (vi)
which is a quadratic in x giving two values of x, say a and o and correspondingly we obtain
two values of'y, say B, and B,. Thus the points of intersection may be distinct or coincident
according as the discriminat of the quadratic equation (vi) is positive or zero. Ifit is less than
zero, then the line does not intersect the circle. As before the condition of tangency can be
obtained by equating the discriminant of (vi) to zero.

The condition of tangency of line (v) to the circle (iv) can also be obtained as follows :
The line L given by Ix +my +n =0 will be a tangent to the circle
X+ +2ex+2fy+c=0

if the distance d of the line from the centre of the circle is equal to its radius . Now the centre

of the circle is C(-g, —f) and radius = /g2 + 2 — ¢ . Hence line L will be tangent to the circle,
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- fg o/
it 5 5 =.l0? _
+??? g +f ¢

Ig +
0’% @ f
1 +m?

or

g +mf —n)? =P +mP) g+ 7o)

N.B The condition for the line to be a secant or not intersecting the circle can be seen to be
(Ig+mf—n)? <(PF+m?) (&*+f—c)and (Ig + mf—n)* > (* +m?) (g* + f* — ¢)respectively.
12.05 System of Circles : Condition that two circles may touch or intersect :
Consider two circles S, and S, given by,
S U=x?+)y?+2gx+2fy+c =0 (1)

S,[=x*+)y"+2gx+2fy+c,=0 (2)

having centres at C, (—g, —f,) and C, (-g,. ;) withradii r, = \/ g + / —¢, and

r,= g% +f 22 — ¢y respectively (Fig.31). If neither of S or S_ lies completely in the interior

of the other, nor touches it internally, then these two circles intersect, touch externally or, neither
intersect nor touch each other ifand only if

CC,<r,+r,CC,=r +r,orCC,>r +r, respectively; i.c.

2 2 =
\/(gz —g) + (- ) S Terer
Ifthe circles touch each other internally, then C,C, =| r —r,|. If either of the circles is in
the interior of the other, then they cannot intersect.
Angle between two circles :

Angle between two intersecting circles is the angle between their tangents (or equivalently
their normals) at a point of intersection. Since tangent at a point on a circle is perpendicular to
the radius joining the point to the centre, we may take angle between the intersecting circles S,
and S, in the accompanying figure in the next page given by equation (1) and (2) as £C PC,,
which is the angle between their normals. If Q is another point of intersection it is easy to see
that mzC PC,=m«C QC,

Taking m«C PC, =0,

CP?+C,P? -C,C3
2C,P.C,P

cosO =

@A) HG S —e) - & =) (- f2))
- 2\/gf+f12_c1\/g22+f22_02
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2gg+ f1.)—e -
- 2\/g12+f12—cl\/g‘2?‘+f22—02 :

SO 0 =C0571 2(g1g2+f.1f2)_cl_cz
2\/g12+f12—01\/g22+f22_02

Cor. The circles cut each other orthogonally if and only if 6 =

K
2 >

i.¢, iff cosd = cos% =0

i.e, iff 2§g1g22+f1f2);c2 —26'2 —0
2\/g1 +/1 _Cl\/gz +J5 -

i.e. | 2Agigr + f1f2)—aq - =0 |

The condition for
orthogenality can be obtained in
an ecasier way by application of
pythagoras theorem.

Circles S, and S, are
orthogonal, & m/C PC,=90°.
=CP+CP=CC/
(&g TSy =g e tg’ T -, 0r2gg, + ) —¢,—¢, = 0.

Circles through points of intersection of two given circles :

Consider the equation S, + &S, =0 (circles S and S, are supposed to intersect),

for any real number 4. This equation is equivalent to

I+ + (1 +k) )y +2(g +kg)x+2(f, +kf)y+ (¢, +kc)=0 3)
which is a second degree equation in x and y with xy - term absent and hence represents a
circleif and only ifk+ 1 #0 and

(g, + kg)* + (f, + KLY > (1 +B) (e, +key).

Using the condition for intersection of two circles it can be proved that the second condition
in the above is satisfied for all real values of £ #— 1. Therefore equation (3) represents a circle
for every real number £ #=—1.

Again if (o, B) be a point of intersection of S, and S_, then (a, B) satisfies both the
equations (1) and (2) and hence,

o’ + B +2ga+2fB+c =0and o’ + B+ 2ga+2fP+c,=0.

Hence, for any real number k,

(+P*+2ga+2fB+c)+thk(®+p +2ga+2fP+c)=0

or(1+h) o+ (1 +P*+2 (g +hkg)o+2( + )P+ (c,+ke)=0
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which shows that (o, ) satisfies equation (3).
Hence, S, +£S,=0 C)
always represents a circle passing through intersection of S and S, for every real value ofk =
—1 and therefore represents the system of circles through intersection of S and S,

If k=—1, then the above equation (4) becomes, S — S =0
or, 2(g,—g) ¥ +2(f,=/)y + (¢, —¢)=0 5)
which is linear in x and y and therefore represents a straight ling, provided S, and S, are not
concentric. This line is known as the Radical Axis of S and S,.

. . .. g1 —8 .
From equation (5) it is seen that the slope of the radical Axis is —( fi — f; ) L7 #1)

Also, the centres of the circles S, and S| being at C (=g, —/)) and C, (-g,, — 1), the

L <> (N -/ . : .
slope of the line joining the centres, GG is e — 2 which shows that the radical axis of

two circles is perpendicular to the line joining their centres. This conclusion also holds iff

«—
= f, as in that case radical axis is vertical and GG is horizontal.

Properties of Radical Axis
The radical axis of two circles S and S, whose cquations are given by
S =x*+)"+2gx+2fy+c =0and
S,=x*+y*+2gx+2fy+c,=0
isS -S =2(g, -g)x+2(,-/)y+c —c,=0.(The circles may or may not be
intersecting. In order that S — S =0 gives equation of radical axis, the expressions for S, and
S, must be such that the coefficients of x* and y* must be same in both S, and S))

Few interesting propertics of radical axis are :
1.  Theradical axis of two circles is perpendicular to the line joining their centres.
2. Incaseofintersecting circles, the radical axis passes through their points of intersection.

3.  The lengths of the tangents drawn to the circles from any point on their radical axis, lying
in the exterior of both the circles, are equal.

4.  Theradicalaxes ofthree circles (with non collenear centres) taken in pairs, are concurrent.
Properties (1) and (2) are obvious from previous discussions. We only prove (3) and
(4).
Proof of (3) :

Radical axis of circles S, and S, is given by

SI—SZEZ(gl—gZ)erZ(fI—fz)y+cl—c2=0.
Let P (4, k) be any point on the radical axis, Such that P(%, k) is in the exterior of both S and
S,

Let a tangent from Pto S| touchit at T, and a tangent fromP to S, touch it at T,. Then, by the
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formula for length of tangent from an external point to a circle, we have
PT?=m+k +2g h+2fk+c, PT)=hm+k+2gh+2fk+c,.
S PT2—=PT?=2(g,—g)h+2(f,—f) k+c —c,=0,since P (h, k) is apoint on the radical
axis.
So PT, = PT, []
Proof of(4) : Let the circlesbe S|, S, and S, with centres C, C, and C, respectively, given by
equations
S =x*+y*+2gx+2fy+c =05 =x+)*+2gx+2fy+c =0and
S,=x*+)y"+2gx+2fy+c, =0.

. . . S e >
Since C, , C, and C, are noncollinear, no two of the lines GG, C,C; and C,C,are

parallel.

The radical axes ofthe circles, taken in pairs, are given by
S -S,=2(g,—g)x+2(,-f)y+tc—c,=0,
S,-S,=2(g,-g)x+2(f,-f)y+c,—c,=0and
S;—S,=2(g,—g)x+2(,—-f)y+tc—c =0

. . H (7‘) F*) .
no two of which are parallel, since no two of ,GG, C,C; and C,;C, parallel, (This follows

from : Radical axis is perpendicular to the line joining the centres.)
[t now follows from

S.—S,=8§,-5,+S, —S, that the radical axis S, — S, =0 passes through the intersection of
the radical axes S, —S,=0and S,—-S,=0. [Remember the discussions on the lines a x+ by
+te,*A(ax+by+c)=0,1reR Hereh=1]

So the radical axes are concurrent |:|

This point is known as the Radical centre of the three circles S, S, and S,

Coaxal Circles :

Definition : A system of circles is said to be coaxal if every pair of circles in the system has the
same radical axis.

Equation of a coaxal system of circles :

Since radical axis of a pair of circles is perpendicualr to the line joining their centres, it
follows that the centres of all the circles forming a coaxal system must be on a line perpendicular
to the radical axis.

Let us take the line containing the centres as the x — axis and the radical axis as the y —

axis. Thus any circle of the system has its centre on the x—axis and hence has its equation in the
form
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X+y +2gx +¢c=0. (A)
Radical axis of the system being the y— axis, its equation is given by x = 0.
Let P (0, k) be a point on the radical axis, supposed to be in the exterior of all the circles

ofthe system. So the length ofthe tangent from P on any circle of the system which is v K+ ,
must be the same for all the circles of the system. [Property (3) ofradical axis|

Therefore c is the same for all circles given by (A). Thus a coaxal system of circles is
represented by (A), where c is a constant for all circles and g is a parameter. By varying g in
R we get different circles of the system, provided g2 > ¢; which is the condition that equation
(A) should represent a circle.
Note : By taking radical axis as the x —axis and centres of the circles on the y —axis, the coaxal
system can be givenby x* +)?+2fy+c=0; f* >c.
Limiting points of a coaxal system :

In the coaxal system (A), radius ofany circle is V g -c Hence, if ¢ > 0 and g* = ¢, we get
two points at (£+c, 0), situated on both sides of the radical axis. These points are known as
the limiting points of the coaxal system.

Limiting points do not exist if ¢ <0 as, in this case, V¢ is not a real number.

Note : If the coaxal system is given by x* + 1%+ 2fy + ¢ =0, f? > ¢ the limiting points are (0,
+\c); provided ¢ > 0.
Intersecting and non intersecting coaxal systems :

Any circle of the coaxal system x? +1? + 2gx + ¢ = 0 intersects the radical axis x = 0 at
points given by y*+c=01i¢c.y= ¢ |

So, if ¢ <0, the points of intersection exist and are (0, + V- ). Such a system is called
an intersecting coaxal system.,

But if ¢ > 0, the points of intersection do not exist and we call the system, a non
intersecting system of coaxal circles. However, for a nonintersecting system, the limiting
points exist and are given by (++/c , 0).

Note : For the coaxal system x? + 12+ 2/ + ¢ =0, /2 > ¢ limiting points are (0, £+/¢ ) if ¢ > 0 and

points of intersection are (+ J-¢ ,0)ifc<0.
2. Inan intersecting system of coaxal circles, all the circles interesect one another and the
radical axis as well, exactly at two points.
3.  Limiting points and points of intersection cannot simultancously exist ifc = 0. (In x* + )?
+2gx+c=0o0rx*+)?+2fy +c=0)

However if c = 0, then all the circles touch one another at (0, 0) which is also the only
limiting point of the system.

Example : Prove that each of the followings are coaxal systems of circles. Determine their points of
intersection or limiting points as the case may be
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) x*+1y* +hkx—-5=0, () x*+)y*+ky+1 =0, (iii)) x> + > + 2gx + 7= 0,
(iv) x>+ =2y -3 =0.
Solution :
()  Radical axis of any pair is given by (k, —k,) x=0
i.e. x=0. So the systemis coaxal.
¢=-5<0. = Circles are intersecting.
Putting x = 0, we get y?—5=0.
So the points of intersection are (0, £V5).
(i)  Radical axis is given by y = 0. So the system is coaxal.
¢ =1 > 0 = circles are nonintersecting.

r= 1/(5)2—1 =0 = k= +2.

.. Limiting points are (0, + 2).
@)  Radical axis isx =0. So the system is coaxal.
¢ =7> 0 = Circles are non intersecting.

r=Ng =T =02 g= V7

.. Limiting points are (+\7, 0).

(iv)  Radical axis is y = 0; hence the system coaxal.
¢ =-3<0 = circles are intersecting.
Putting y =0, we get x>— 3 =0.

So points of intersection are (+ V3, 0).

Solved Examples :

Example1:
Find the equation ofthe circle with centre at (—1, 2) which passes through the point (3, 1).

Solution :

The centre of the circle is (—1, 2). Hence its equation is, (x +1)* + (y — 2)*= #, where ris
the radius.

Since the circle passes through the point (3, 1)

we have, B+ 1)2+ (1 -2)*=r

or, r*=17.

Hence the required equationis (x +1)*+ (y—2)*=17.

Example 2 :

Find the equation of'the circle which passes through the points (0,1), (1, 0) and (2, 1).
Find its radius and co-ordinates of the centre.
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Solution :

Let the equation of the circle be x* + y* + 2gx + 2fy + ¢ = 0.
Since it passes through the point (0, 1), we have, 1 +2/+c¢=0. (1)
Also, it passes through (1, 0), Hence, 1 +2g+ ¢ =0. (ii)
From (i) and (ii) we get f=g.
Again (2, 1) is also a point on the circle. So putting x =2 and y = 1 in the equation of the
circle, we get

4g+2f+5+c=00r6f+c+5=0. (i)
Now, from (1) & (i) we get, c=1,/=-1,g =—1.
So the required equation is x* + 12 —2x -2y + 1 = 0.

The co-ordinates of the centre are (—g, — f) and the radius is & 2 +f 2 ¢ , thus the
centre is(1, 1) and radius r=1.

Example 3 :
Find the radius and co-ordinates of the centre of the circle 2x* + 2)? + 14x—2y + 7 = 0.

Find also the equation of the circle which is concentric with this circle and is of radius 5.
Solution :

The given ecquation of the circle can be written as x> + y* + 7x —y + % =0

which gives us on comparision with the circle, x* + y* + 2gx +2fy + ¢=0;
_7 -1 _ 1

> == 3 and ¢ 7 -

Hence the co-ordinates of the centre are (—g, — /) = (—% %) and the radius is

r—\/g +f C—\/—+ ————3.

The equation of the concentric circle ofradius 5 is

2 2
7 1
£ + —= =
(x + 2) (y 2) 25
or, 2x+7)+ (2y— 1)>=100
or, 4x* +4y*+28x—4y—50=0.
Example4 :
Find the equation of the circle whose diameter is a diagonal of the rectangle formed by the
linesx=4, x=—4,y=2and y=-
Solution :
The four vertices of the givenrectangle are A (4, 2), B (4, 2) C(—4,-3) and D (4 - 3), Hence
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the equation of the circle with AC as diameter is
-+ D+E-2)(+3)=0
or, x> +y —y—22=0.
Example 5 :

Find the length of the tangent drawn from the point (-2, 3) to the circle,
X+y:-4x+6y+4=0.

Solution :

The co-ordinates of the centre C of the circle are (2, —3) and the radius ¥=.,/4 + 9 —4 =3.So
the length ofthe tangent is givenby,

J2+2)2+(=3 —3)2—9 = 16436 —9 = V43

Example 6 :

Find the equation of the circle which has its centre on.x —axis and which passes through
the points (4, 7) and (12, 9). Prove that the straight line 9x— 2y =5 is a tangent to this circle.

Solution :

Let the equation of the circle be x* +)? + 2gx + 2fy + ¢ = 0.

Since the centre is onx — axis, we have /= 0. Again this circle passes through the points
(4, 7) and (12, 9). Hence putting the respective values ofx and y, we get

8g+ 14f+c=— 65,24g+ 18+ c=-225.

On subtraction, we get (putting f=0) 16g =— 160 or, g=—10.

Hence, ¢ = 15.

So the required equation is x* + y*— 20x + 15 =0.

The centre of this circle is (10, 0) and radius V100 —15 = V85 |
Now, the perpendicular distance of the point (10, 0) from the line 9x —2y—-5=01is

90 -5 _ Js5
V81+4 )
which is equal to the radius of the circle. Hence the line 9x — 2y =5 is a tangent to the
circle.
Example 7 :

Find the equation of the circle which touches the y-axis at the point (0, 4) and passes
through the point (2, 0). Find the equation of tangents at the points where this circle meets the
X- axis.

Solution :

The y-axis is a tangent to the circle at (0, 4). Hence the y-co-ordinate of the centre is 4. If
(h, 4) be the centre of the circle, then its equation is, (x — A)* + (y —4)*= k%
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Since this circle passes through the point (2, 0), we have (2 —h)? + 16 = h?;
or, h=35.
Hence, the equation of the cirlce is, (x— 5)* + (y—4)*=25
or, x>+ —10x—-8y +16=0.
The point of intersection of this circle with x - axis is obtained by putting y = 0, which gives,
¥ -10x+16=0
o, (x—8)(x—2)=0 or,x=2,8.
Therefore, the circle meets the x- axis at (2, 0) and (8, 0). The tangents to the circle,
X+ —10x—-8+16=0
at (2, 0) and (8, 0) respectively are given by, 2x -5 (x+2)-4(y+0)+16=0
and, 8x—-5(x+8) -4 (y+0)+16=01ie. -3x—4y+6=0;and 3x—4y-24=0.
Example 8 :
Obtain the condition that the line /x + my + n = 0 will be a tangent to the circle X
+ 32+ 2gx + 2fy + c= 0.
Solution :

A line is a tangent to a circle if the length of the perpendicular drawn from the centre of the
circle to the given line, is equal to the radius of the circle.

. . . . [ 2 2
Now, the given circle has its centre at (—g, —f) and radius V€~ + ./~ —¢ . The length of

perpendicular from (—g, —/) to the line Ix + my +n = 01s lgtmf—n and hence the line /x
12 + m?

+ my + ¢=01is a tangent to the circle x* +y* +2gx + 2fy + ¢ =0,

plexmfon A
ife 4 - _ + _
g +tf7-c
VI + m?
or, (lg + mf—n)?= (P+m®) (& + [ —c).

12.06 Parametric form of equations of a circle

Let (0, 0) be the centre of the circle of radius a.
Let P (x, y) be any point on this circle.
If P(x, y)is the point P (a, 6) in polar coordinates with respect to the centre of the circle as

pole and O_))( as the initial ray (see definition ofpolar co-ordinates), thenx= acos 0 and y=
asin 6 .
Here 6 is a parameter with 0 <6 <2z, For different values of 6 lying in [0, 27) we can get
different points on the circle.

Thus we see that the parametric form of equations of the circle with centre at origin and
radius equal to a, is given by

x = acosBandy = asm6 |where 6 is a parameter with 0 <6 <2x.
The parametric form of equations of the circle with centre at (%, k) and radius equal to a ,
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is given by
x=h+a cosbandy=+k+a sin 6 where 6 is a parameter, 0 <6 <2m.
EXERCISES 12 (a)
1. Fillin the blanks by choosing the correct answer from the given alternatives :
(a) The centre of the circlex* +)*?+2x—6y+1=01is —.
[(2,-6),(=2,06), (-1, 3), (1, -3)]
(b) The equation 2x* — ky* — 6x + 4y — 1 = 0 represents a circle if k=—. [2, -2, 0,1]
(¢) The point (-3, 4) lies— the circle x* +)? = 16. [outside, inside, on]
(d) The line y =x + & touches the circle x* + > =16, if k= —
[#2 V2, £ 4 V2, £ 8V2, £16V2]
(¢) The radius of the circle x>+ )2 —2x +4y + 1 =01is —— [1,2,419]
2. State (withreasons), which ofthe follwing are frue or false :
(a) Every second degree equation in x and y represents a circle.
(b) Thecircle (x—1)*+(y—1)>=1 passes through origin.
(¢) Theline y =0 is a tangent to the circle (x +1)*+(y —2)*=1.
(d) Theradical axis of two circles always passes through the centre of one of the circles.
(¢) The circles x* + (y —3)* =4 and (x —4)* + 1> = 9 touch each other.
3.  Find the equation of circles determined by the following conditions.

(a)
(b)
(c)
(d)
(e)
@
(2)
(h)

(i)
Q)
(k)
)

(m)
(n)

The centre at (1, 4) and passing through (-2, 1).

The centre at (-2, 3) and passing through origin.

The centre at (3, 2) and the circle is tangent to x-axis.

The centre at (-1, 4) and the circle is tangent to y-axis.

The ends of diameter are (-5, 3) and (7, 5).

The radius is 5 and circle is tangent to both the axes.

The centre is on the x-axis and the circle passes through the origin and the point (4, 2).

The centre is onthe line 8x + 5y =0 and the circle passes through the points (2, 1) and
(3,5).

The centre is on the line 2x +y — 3 =0 and the circle passes through the points (5, 1) and (2
-3).

The circle is tangent to the line x + 2y —9 =0 at (5, 2) and also tangent to the line 2x —
3y—7=0at (2, -1)

The circle touches the axis of x at (3, 0) and also touches the line 3y —4x=12.

The circle is tangent to x-axis and passes through (1,-2) and (3, —4).

The circle passes through origin and cuts off intercepts a and b from the axes.

The circle touches the axis of x at a distance 3 from origin and intercepts a distance of 6
on the y-axis.
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10.

I1.

12.

Find the centre and radius ofthe following circles :

@A) x2+y*+6x—4y—12=0 b)) ax*+ay*+2ex+2fy+k=0

() 4x*+4”—4x+12y—15=0 d a@x@+yH)-—bx—cy=0.

Obtain the equation of circles passing through the following points and determine the co-ordinates
of centre and radius of the circle in each case :

(a) thepoints (3,4) (4, —3)and (-3, 4),

(b) the points (2, 3) (6, 1) and (4, — 6),

(c) thepoints (a, 0), (—a, 0) and (0, b),

(d) thepoints (-3, 1), (5,-3) and (-3, 4).

Find the equation of the circles circumscribing the triangles formed by the lines given below :
(a) thelinesx=0,y=x, 2x+ 3y = 10;

(b) the lines x =0, 4x + 5y = 35, 4y = 3x + 25;

(c) thelinesx=0,y=0,3x+4y—12=0;

(d) thelinesy=x, y=2andy=3x+2;

(e) thelinesx+y=6,2x+y=4andx+2y =5.

Find the co-ordinates of the points where the circle x* + y? — 7x — 8y + 12 = 0 meets the
coordinate axes and hence find the intercepts on the axes.

[Hint : Ifa circle intersects a line L at points A and B, then the length, AB is its intercepts on
theline L]

Find the equation of the circle passing through the point (1, —2) and having its centre at the
point of intersection of lines 2x—y +3=0andx + 2y— 1 =0.

Find the equation of the circle whose ends of a diameter are the points of intersections of the
limesx +y—1=0,4x+3y+1=0and4x+y +3=0,x-2y+3=0.

Find the equation of the circle inscribed inside the triangle formed by the line% + % =1land

the co- ordinate axes.

(a) Find the equation of the circle with its centre at (3, 2) and which touches the line X
+2y—4=0.

(b) The line 3x + 4y + 30 = 0 is a tangent to the circle whose centre is at (—% —%) )

Find the equation of the circle.

(c) Prove that the points (9, 7), (11, 3) lie on a circle with centre at the origin. Find the
equation of'the circle.

(d) Find the equation of the circle which touches the line x =0, x =a and 3x + 4y + 5a = 0.

(e) Ifacircle touches the co-ordinate axes and also touches the straight line% + % =1, and

has its centre in the first quadrant, find its equation.

©
ABCD is a square of side a. AB and AD are taken as co-ordinate axes, prove that the
equation of the circle circumscribing the square is x* + y* = a (x + y).
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13. (a) Find the equation ofthe tangent and normal to the circle x> + y* =25 at the point (3, —4).
(b) Find the equation of the tangent and normal to the circle x>+ )* — 3x +4y—31 =0 at the
point (-2, 3).
(¢) Find the equation of the tangents to the circle x* +1*+ 4x — 6y — 16 = 0 at the point
where it meets the y-axis.
(d) Find the condition under which the tangents at (x,, y,) and (x,, ,) to the circle x* +)* + 2gx
+ 2fy + ¢ = 0 are perpendicular.
(e) Calculate the radiiand distance between the centres ofthe circles, whose equations are
X2+ —16x—10y +8=0;x*+1*+ 6x — 4y —-36=0.
Hence or otherwise prove that the tangents drawn to the circles at their points of intersection
are perpendicular.
14. (a) Find the equation of the tangents to the circle x* + y? =9, perpendicular to the line x—y
—1=0.
(b) Find the equation of the tangents to the circle x* +*— 2x — 4y =40, parallel to the line
3x—4y=1.
(¢) Show that the line x— 7y +5 = 0 is a tangent to the circle x*+)?—5x+ 5y =0. Find the
point of contact. Find also the equation of tangent parallel to the given line.
(d) Prove that the line ax + by + ¢ = 0 will be a tangent to the circle x* +)? =2, if
¥ (a*+ b*) =%
() Prove that the line 2x + y = 1 is a tangent to the circle x* + y*+ 6x— 4y + 8 =0.
()  Ifthe line 4y — 3x =k is a tangent to the circle x* + y*+ 10x — 6y + 9 =0, find k.
Also find the co-ordinates of the point of contact.
15. (a) Find the length of the tangent drewn to the circles x* +y* + 10x — 6y + 8§ = 0 from the
centre of the circle x> + y*— 4x=0.
(b) Find the length of the tangent drawn from the point (2, —1) to the circle, x* +y? — 6x +
10y + 18 = 0.
(¢) Find the length of the tangent drawn from the point (4, 7) to the circle x* +y? =15.
16. (a) Prove that the circles given by the equations x* +)? +2x— 8y +8=0and x*+)* + 10x
—2y +22 =0 touch each other externally. Find also the point of cantact.
(b) Prove that the circles given by the equations x* +)* =4 and x* +)* + 6x+ 8y —24 =0,
touch each other and find the equation of the common tangent.
(¢) Prove that the two circles x* + )2 + 2by + ¢* =0 and x* +)? + 2ax + ¢* = 0, will touch
each other 1fa%2 + b% = c%
(d) Prove that the circles given by x> +)? + 2ax + 2by + ¢ =0, and x* + )? + 2bx + 2ay +
¢ =0 touth each other if (a + b) = 2c.
17. Find the equation of the circle through the point of intersection of circles x* + y*— 6x=0 and
x>+ y*+4y—1=0 and the point (-1, 1).
18. Find the equation of'the circle passing through the intersection of the circles x* + y* —2ax =0
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19.
20.

21.
22,

23.

24.

25.

and x* + y?— 2by = 0 and having the centre on the line % — % =2.

Find the radical axis of the circles x* + y? — 6x — 8y — 3 =0 and 2x* + 2y* + 4x — 8y = 0.
Find the radical axis of the circles x* + y?— 6x + 8y— 12 =0, and x> + y* + 6x —8y +12 =0. Prove
that the radical axis is perpendicular to the line joining the centres of the two circles.

If centre of one circle lies on or inside another, prove that the circles cannot be orthogonal.
Ifa circle S intersects circles S and S, orthogonally, prove that the centre of S lies on the
radical axis of S, and S,

Hints : Take the line of centres of S, and S, as x - axis and the radical axis as y
- axis. Use conditions for otrhogonal intersectionof S, S and S, S, simultaneously and prove
that S is centred on the y - axis.
R is the radical centre of circles S, S, and S.. Prove that if R is on/ inside / outside one of the
circles then it is similarly situated with respect to the other two.

Determine a circle which cuts orthogonally each of the circles, S, : x* +y* —4x -6y +12 =0,
S, X¥+y +4x+06y+12=0,S :xX*+y —4x+6y+12=0.

Hints : The centre of the required circle S must be the radical centre R (why ?), which
lies outside all the circles. Then show that radius of S must be the length of the tangent from R
to any circle of the system.

Prove that no pair of concentric circles can have a radical axis.

12.1 The Parabola
Definitions :

Equation of Parabola : ¢

A parabola is a set (locus) of all points in a plane such that the distance of every point of
the set from a given point is equal to its distance from a given line in that plane.

The given point is called the ‘focus’ and the given line is called the ‘directrix’ of the
parabola. The line through focus perpendicular to the directrix is called the ‘axis’ of the parabola.
If the axis intersects the directrix at the point A and the focus is the point F, then the midpoint of

AF 1s called the ‘vertex’ of the parabola. Any chord of the parabola passing through the focus
is called a “focal chord’. The focal chord perpendirnlar ta the avic ic ralled the ‘latne rectuym’

of the parabola. oY

e {(a,la)

P
Consider a parabola with its

vertex at origin and focus F on the
x - axis. If F be the point (a, 0),
then the derectrix D is the line K=-0 o Fla,0)
givenbyx=—a.

~

Then by definition, for any
point P(x, ) on the parabola, we
have L' (a.-10)

PF =PM
where M is the foot of the perpendicular from P on the directrix. Thus PF?>=PM?
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which gives,
(x—a)+(y—0)2=(x+a

or, V*=(x+a)’— (x—a)*=4dax

Hence, y2 =4ax

)2

is the equation of the parabola with vertex at (0,0) and axis along x — axis, with focus at (a, 0)

From the equation y* = 4ax we see that if a > 0, then x < 0 and if @ <0, then x > 0 which
shows that if @ is positive, the parabola is open to the right of y — axis and if a <0, the parabola

is opento left.

Proceeding likewise, we can show that if the vertex is at origin and the axis is along y —
axis, then the equation of the parabola will be

(2)

where F (0, a) is the focus. The parabola will be open upward if @ > 0 and the downwards if a

X% = 4ay
< 0. (Fig. 35)
Y
a<o ;
\\//(170
—> X

/

d )

1Y

<
s

Instead of taking the vertex of the origin, let the vertex of the parabola be at V (4, k)

and the axis be parallel to x
- axis. If we consider the
focus to be F (7 + a, k),
then the directrix D is the line
x = h — a. Now, for any
point P(x,)) on the parabola
on the RHS

PM = PF where M
is the foot of the perpen-
dicular drawn from P on the
directrix.
Since, PM = |x — (h —a)|

=|x—h+a|
we have

PM? = PF?

Y.‘

L
\(h-a,ktﬁ\ // (h+a ik +20)
M \ (,xai
(h-ahK)  VIthK)
‘ F(h'f Q)k)
a7zo
(h-a,k-20}a<0 D

S Ch+a,k~2a)

>
>
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or, {(x—h)+a}2=(x_h —a)2+(y—k)2
or, y — k)= {(x—h) +a}*— {(x—h)—a}?

=4a. (x—h).

Hence | (y—k)? =4a(x—h) (3)

is the equation of the parabola whose vertex is at (%, k) and axis parallel to x — axis. As before,
if a> 0, the parabola is open to the right and if a <0, the parabola is open to the left .(Fig.36)

Similarly, if the vertex is at

(h, k) and the axis is parallel to y

- axis, then it can be shown that Y, «
the equation of the parabola is ¥ y(hi2a, kea) ‘;""‘\“U J{n+30,kex @)
LAY i -
(x=h)* =4ay=k) [ @ a>0
and if a > 0, the parabola is open : Vv |(h X
upwards and for a < 0, the 0.4 0
parabola is open downwards. / X
. 3 k-'&)
(Figure on RHS) (ho1a,ke®)  (hkea (h420.
The above equations (3) and 5 4
(4) are equations of parabola in
standard form.
Note 1: The parametric equations of the parabola y* = 4ax. are given by x = a#*, y = 2at, and

Note 2 :

Note 3 :

thus any point on the parabola y* = 4ax can be taken as (af?, 2af) for some value of the

parameter 7.

The general equation of the parabola with its axis parallel to one of the co-ordinate axes, is a
quadratic inx and linear in y, or quadratic iny and linear inx. Thus the equations y = ax* + bx
+ ¢ and x=Ay” + By + C are respectively the equations of parabolas with their axes parallel

to y—axis and x - axis and vertex being at some point (4, k) for suitable values of 2 and £.

The latus rectum ofthe parabola being the chord passing through focus and perpendicular
to the axis, is the line segment LL' (in the figure demonstrating derivication of the equation
y*=4ax). Since the equation of the parabola is y* = 4ax, for x = a, we have, y = +2a.
Hence the end points of the latus rectum LL' have co-ordinates (@, +2a). This gives us
that for the parabola y* = 4ax, the length of the /atus rectum is |4a|. Similarly, for the
parabola x* = 4ay, the length of the latus rectum is also |[4a| and the co-ordinates of the

end points of the latus rectum are (+2a, a).
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Note 4 : In general, if the parabola has the vertex at any point (4, k), then the co-ordinates ofthe
focus and end points of latus rectum are as shown in the respective figures.

Equations of Tangent and Normal

Consider the parabola given by y* = 4ax

and let P(x, y) and Q (x,, y,) be any two points on it. Then the equation of the chord PQ is

- oy 2TV
givenby (y—y) F— (x—x).

P(x,, y) and Q (x,, y,) being points on the parabola y* = 4ax, we have
y,>=4ax andy’ = 4dax,.
Hence, y,> =y *=4a (x,—x )

or Y2=n _ 4a
’ Xp —X] W+

So, the equation of the chord % is given by (y —y ) = non (x—x)= 4a (x—x,).

X3~ X S
g
PQ becomes the tangent at (x, y ) if y, = y, and x, — x| along the curve.
Hence taking the limit, the equation of tangent at (x,, y,) is
_ 4a
(y _y1 - zyl (x xl
_ 2a )
Ora (y_yl)_y_l(x_xl Or, yyl_yl —Zax—2axl
or, yy, = 2ax + (y* — 2ax)) = 2ax + (dax, — 2ax)),
or, | Y\1 =2a(x+x1) (1)

If instead of y* = 4ax we consider the parabola x* = 4ay, then proceeding as above, it
can be shown that the equation of tangent at (x, y,) is

xx =2a(y+yp) (2)

Next, to find the equation of normal at the point (x, y,) to the parabola y* = 4ax, we see
that the tangent at (x, y ) is yy, = 2a (x + x,),

or, 2ax —yy, + 2ax, =0

2a,

whose slope is
b
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2L . So the equation of normal at (x, y,) is

Hence the slope ofnormal is — oa

0-1)= 5k (x-x).

—N

If we denote the slope of normal by m = 2a

, then y, =—2am and hence y * = 4ax,

2
gives x, = Z_l = am’. Hence any point (x, y,) on the parabola is given by (am?, — 2am)
a

with m being a parameter and the equation of normal becomes (y + 2am) = m(x — am?).

Thus, | y = mx—2am—am® | is the normal at (x, y,) with slope m = _2_3;1‘
Point of intersection of the parabola y* = 4ax and the line y = mx + ¢ and condition of

tangency.

The only vertical linc which is a tangent to the parabola y* = 4ax is x = 0 (the y — axis)
which touches the parabola at its vertex. No other vertical or horizontal line can be a
tangent. So, to explore the condition of tangency, we need only consider lines of the
form:y=mx+c,m=0.

Let y? = 4ax be a given parabola and y = mx + ¢ be a given line. Then eliminating y
between the above two equations, we obtain y* = (mx + ¢)* = 4ax
or, m** +(2mc —4a)x+ =0,
which is a quadratic equation in x and hence gives two values of x, say x, and x,. If y, and
v, be the corresponding values of y obtained from y = mx+ ¢, then the two points of
intersection are (x,, y,) and (x,, y,). This linec becomes a tangent to the parabola if the two
points of intersection coincide, i,¢., the above quadratic in x has both its roots equal i.¢.,
the discriminant of the equation is zero, i.¢., 2mc — 4a)* = 4c*m?

or, 16a*> = 16amc

a
or, C*E

So the line y = mx + %; m # 0 is always a tangent to the parabola y* = 4ax.

Similarly it can be shown that the line y = mx + ¢ will be a tangent to the parabola

x*=4day, if | c= —am?® | . The only horizontal tangent is y = 0 (the x - axis). No other

horizontal or vertical line can be a tangent to this parabola.
Corrollary : No two tangents of a parabala can be parallel. (Prove)
Parametric form of equations of a parabola :

It is convenient to express the co-ordinates of any point on the parabola y* = 4ax in
terms of one variable.



[298 Elements of Mathematics, Vol- 1 |

It is clear that x = a* and y = 2at always satisfy the equation y* = 4ax for all real values
ofz.

Thus | x = at*and y=2at |,where tis areal parameter represent the parametric form
of equations of the parabola y* = 4ax. Similarly, x = 2at, y = af* are the parametric equations
of'the parabola x* = 4ay.

The point whose co-ordinates are (at?, 2at) or (2at, af*) for given real value of f may,
for brevity, be called the point ‘7’ on the parabola ) = 4ax or x* = 4ay respectively.

SOLVED EXAMPLES :
Example 1 :
Obtain the equations of the following parabolas :
(a) focus at (2, 0) and directrix x + 2 =0,
(b) focus at (1, 1) and directrix y =0,
(c) focus at (1, 2) and directrix x + y=2.
Solution :

(a) We know that if a parabola has the focus at (a, 0) and the vertex at (0, 0), then its
equation is )? = 4ax.

Since the focus of the parabola is at (2, 0) and the directrix is the line x + 2 = 0 the
vertex is at (0, 0) and a = 2. So the equation of the parabola is )* = 4.2x = 8x.

(b) The focus of the parabola is at (1, 1). The directrix being the line y = 0 (i.¢. x- axis),
the axis is parallel to y-axis passing through (1,1). The vertex being the mid point of the

perpendicular from focus on the directrix, is the point (1, %) .

We know that the equation of the porabola with vertex at (4, k) and axis parallel to
y-axis is (x —h)* = 4a (y— k)

PR | _ 1
Here, h =1, k= 3 and a 3

Hence the required equation is (x — 1)? = 4. 51 [y —%]

or, (x—1)y=2y—1,0or,x*—2x-2y+2=0.
(c) The focus is at (1, 2) and directrix is the linex+y—2=0.

By definition, the parabola is the locus of a point equidistant from the focus and
the directrix. If P (x, y) is any point on the parabola, then

xty=2Y
1P+ -2 = |y

or,2 (x—1)+2(y-2y =x+y-2)
or x* +31? —2xy — 4y + 6 = 0 is the required equation.
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Example 2 :

Find the co-ordinates of the vertex, the focus, the length oflatus rectum, the equation of
the directrix, of the parabola 3x* + 12x — 8y = 0.

Solution :

The given equation of the parabola can be rewritten as 3(x* + 4x + 4) =8y + 12

8 3
1= S p+2
or, (x+2) 3 (J’ 2).

This on comparision with (x—h)*=4a (y—k) givesh=—2,k=- % and a =% .
Hence the given parabola has the vertex at (—2, _73) and the focusisat (4, k + a) =

(—2, - %) . The length oflatus rectum is 4a = % . The equation ofthe directrix is y=

o =3_2 _ _13
kfa!—2 3 6 -

Example 3 :

Find the equation of the parabola passing through the points (1, 2), (-2, 3) and (2, —1) and
the axis being parallel to x — axis.
Solution :
We know that a parabola with its axis parallel to x - axis is given by
x=A»+By+C. .. (1)
Since this passes through the points (1, 2), (-2, 3) and (2, —1), putting the respective
values of x and y in (1), we have
4 A+2B+C=1,9A+3B+C=-2,A-B+C=2.

Solving these equations, we get A = —% ,B =% and C = 3.
2
2
Hence, the equation of the parabola is x = — % + % +3

or, 2)*+3x-y—-9=0.
Example 4 :

Find the equations of the tangent and normal to the parabola y* = 4ax at the points (af, 2at).
Solution :

The equation of tangent to the parabola y* = 4ax at the point (x,, y,) is,
yy, = 2a (x + x)) and the equation of the normal at (x, y)) is
2a (y-y)ty (x—x)=0.
In the present case x, = at’, y, = 2af and  hence the equation of tangent at
(af, 2at) is, 2 ayt = 2a (x + at®)
or, x—yt+tatf=0.
The equation of the normal is, 2a (v — 2af) + 2at (x— at*) =0
or, y +xt—2at—alf =0.
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12.2 The Ellipse
Definitions : An ellipse is a set (locus) of all points in a plane such that the sum of the distances of
any point of the set from two given points in that plane is a constant.

The two given points are called foci (plural of focus). The mid point of the line segment
joining the fociis called the centre and the line through foci is called the axis ofthe ellipse. The
points where the ellipse cuts the axis are called its vertices.

Equation of an Ellipse :

Let us consider an ellipse

with its centre at origin and the foci
along x-axis (in the figure on
RHS). Then the foci will be given Y
by F 0) and F_ (- ¢,0), fi

y 1 (Cg )an 2( C’ )7 or L ,C,(“ L CC
some real number ¢ >0. If we ‘/l/‘ /"5:)
denote the constant sum of the

. / Fy v

distances of any point on the

.

' _ é’-
B:_ L (C, E)

ellipse from the foci by 2a, then
for any point P(x, y) on the ellipse,

we have
PF +PF,=2a 1=
or PF1 =2a — PF2

Squaring both sides, we get,

PF? = 4a® + PF? — 4a PF,

or, (x—¢)* + (v =0y’ =4a>+ (x + ¢)* + (y — 0)* — 4a PF,
or, 4a PF,=4a’ + (x + ¢)’ — (x— ¢)’ = 4a° +4xc,

or,a PF, =a* + xc

2 2 . .
or, a \/(x +¢)° +y7 =a® + xc squaring again, we have a® {(x +¢)> + y*} = a* + x’c* +
2a*xc
or, a’x? + a*c*+ 2a* xc + a*y* = a* + x*c* + 2a’xc
or, (a* — ) x*+ a*y* = a* (a* — ¢?),
2
ﬁ + Y =1
or, = R .
a a —cC

Now, in the triangle PF F_, PF + PF,>F F,

12
which gives 2a > 2¢, or a > ¢. So writing b* = a* — ¢* we have the equation ofthe ellipse as

2

2 (D
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Similarly, if we consider the centre of the ellipse to be at (0, 0) and fociat (0, +¢)i.e. F,
(0, ¢)and F, (0, — ¢), then proceeding exactly as above, it can be shown that, the equation of
the ellipse is,

2 2
Y x° _
S 2)
a b

where b* = a?® — 2.

2

2
Note 1: Ifwe consider the ellipse x—2 + y_2 =1
a

then putting y =0, we getx =+ aand x=0 gives us y =+ b. Hence the ellipse meets the — x-
axis at the points (a, 0) and (- a, 0) and y-axis at (0, ) and (0, — ). The line segment V,V,

joining (a, 0)and (—a, 0) is called the major axis. The line segment B,B, joining (0, ) and
(0, —b) is called the minor axis. Hence the major axis is of length 2a and minor axis is of length
2b. The end points of major axis are the veriices of the ellipse having co-ordinates (x a, 0).

2 2
Note2: If we consider the ellipse y_2 + Z—z =1,
a

then the points with co-ordinates
(0, a) and (0, — a) are end points
of major axis and the points with
co-ordinates (b, 0) and (-b, 0) are
end points of the minor axis.

Note 3 : The chords L’ and L,L,

of the ellipse through the fociand
perpendicular to the axis are called —£50) (
Latera recta (Plural of latus |
rectum). Now, if we consider the

ellipse, wie-y @
— T4 ¢
2y b b [ 2 2
2 + b—2=1,theny2=a—2 (@*>=x*)or, y= £ 4 (@™ —x7).
2
Ifx=ictheny=i§ (a2 —02) =4+ 507
a

Hence, the end points of latera recta for this ellips are given by (£ ¢, + b*/a) and cach

. 2b?
latus rectum is of length R
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Similarly, we can show that the end points of latera racta of the ellipse y_2 + 2—2 =1

. LB . 2b?
are given by | =~ > * ¢ and each one is also oflength o

Note4 : Theratioe= g is called the eccentricity ofthe ellipse, and it always lies between 0 and 1
(as 0 <c<a).
Equation of Ellipse with centre at (A, k) and axis parallel to co-ordinate axes :
Let us consider an ellipse with its centre at C (A, k) and let the axis of the ellipse be

parallel to the x-axis. If F (4 + ¢, k) and F, (4 — c, k) be the foci of the ellipse then for
any point P (x, y) on the ellipse, we have,

AY £ g, 4th) .
G\—C;ﬁi&z___‘ P(Nﬂ(h-%('-;k'(‘gjs
L
(h-ak) {h-dsk (hd, 10 {htask)

Vl! cltw T, v
\“—-—’ﬂ h—PC: k":{g};)

G-ck5 tg T i)

:’)V :::(
PF, + PF, = constant = 2a, Say.
or, PF, = 2a - PF,
oL (r —h e+ (y ~ B’ ey
= 22 - Jx—h+e) + (v - k)’ v
which on simplification gives, h- aéz +0) (hlkecy ki)
(x —h)2 N (y —k)2 _, 0 b Fi W
a? b? DB el Bl
where b* = a* — . i lh-4k0
Similarly, if the centre of the ellipse is at Awa e P
(h, k) and the axis is parallel to y - axis, then b = k<) (ht&>k-0)
proceeding as above, it can be seen that the
equation of ellipse !
v -k | x=h’ N .
S i E N © 0]
a

with *> =a’ - ¢
the equations (1) and (2) are called equations of cllipse in standard forms.

Note (1) In these case the co-ordinates of the end points of major and minor axes, foci, the latera
recta and the centre are as shown in the respective figures.
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Equation of Tangent and Normal :

: . 2
Consider the ellipse, x—2 + y_2 = 1. (1)
a b
If P(x, y) and Q (x,, y,) are two points on the ¢llipse, then the equation of the line
«—>
. Y2 =N
PQ is given by (y — y)= (ﬂ) (x—x). 2)
Now, P (x, ) and Q (x,, y,) lie on (1). Hence,
2 2 2 2
Moy Mg 22
a? b2 a* b?

. 2 —xa? 2 _ 2
So subtracting we get, X1 2 N T

a® b2

2 2 2 2

or, X —X3 _ Y2 =N
a’ B?
Yo =0 _ b (x +x)
or Y2 TN a’ O+ )
) QE_ X1 +xp

So the equation (2) becomes (y —y,) = — 2 \ 3+ (x — X)) 3)

«—>

PQ becomes a tangent at P(x ,y,) if Q— P along the curve, i.e.x, > x andy, - y,.
So, taking the limit, from equation (3) we get

p? (2%
y-y)=- 2 (Z—yl) (x—x,),

2 2
or, T4 MM M
a’ b? a b
Hence, the required equation of tangent at (x,, y)) is
il IS4
>t Y L 4)
a

ble
From equation (4) it is seen that the slope of the tangent at (x , y,) is, — [azy J and the
1

2
a

slope of normal a (x, y,) is PR So the equation of normal at (x, y,) is given by
_ay
(y 7.)}1) ble (x_xl)
X—Xxp _ ¥Y—Nn
or, xlbz ylaz (5)
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Note : Similarly equations for tangent and normal can also be deduced for the ellipse,

2

Condition that the line y = mx + ¢ is a tangent to the ellipse x_2 + z—z =1
a

The only vertical tangents are : x =+ a. Now, consider a non vertical line y = mx + c.

2

2
The line y = mx + ¢ intersects the ellipse, x—2 + 2—2 =1
a

at two points whose x — coordiantes are given by the equation — +
a

X2 (mx + o) _

> !

2

ie. (b* + m*a®) x* + 2mca’x + (c*a* — a*h*) =0

which is a quadratic in x having two roots, sayx and x,. Ify and y, are the corresponding
values ofy, then (x,y,) and (x,, y,) are the points of intersection. The line becomes a tangent if
the two points of intersection are coincident i.e., if the roots of the above quadratic are equal

ie.,

dm*c*a* — 4 (B> + m*a®) (¢* - b)) a*=0

i.e.

= atm? +b? (D

So the lines : y= mx + « a*m® +b> always represent a pair of parallel tangents to the given
ellipse.

Focus - directrix property of Ellipse

While deriving the equation of the ellipse with centre at (0, 0) and fociat (+¢, 0)in 8.18

we obtained that for any point P(x, ) on the ellipse, if 2a be the constant sum of its distances

from the foci, then a 1/(erc)eryz a2+xcc[x+i]

C

2
o uror e - £+ 2)

which shows that the distance of P(x, ) from the point (—c, 0) bears a constant ratio % to its

2
distance fromx =— a? (the ratio being < 1). Hence the ellipse can be defined as a locus such

that the distance of every point on it from a given point bears a constant ratio, less than 1, to its

2 2
a

2
distance from a given line. The line x = — - is a directrix for the ellipse x—2 + Z—2 = 1.
a
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2
Similarly from the symmetry of the figure, we also obtain that the line x = C’T is another

directrix for the ellipse. Similarly the directrices of the ellipse
2 2
y X a
— + =lare y=+—
a2 b 4 c
Parametric form of equations of an ellipse :

The circle which is described on the major axis of an ellipse as diameter, is called the
auxiliary circle of the ellipse.

2 2
If we consider the ellipse x_2 + ;;—2 =1, where a > b, then the length of the major axis
a

of'the ellipse is 2a. The origin is the mid-point 0 of the major axis.
So the centre of the auxiliary circle of the ellipse is (0, 0) and the radius is a.

2
Hence the equation of the auxiliary circle of the cllipse x_2 + Z—z =lisx?*+)y*=a’
a
Ay

X - V:l(;\ > X

A P aA’
7]
P=(xy)

Q
(a0 Yy

AA' is the major axis ofthe ellipse.
Let P (x, y) be any point on the ellipse. Let the line through P perpendicular to the major axis
meet it at N.

%
Let Np meet the auxilary circle at Q.
Then OQ = a, the radius of the auxiliary circle.

N
IfQ is the point (a, ¢) in polar coordinates with respect to the centre O as pole and OX
as initial ray, then ¢ is known as the ‘eccentric angle’ of the point P on the ellipse. [Note that although
the name stands as such, the term ‘eccentric angle’ is actually not an angle. It is essentially an arc -
measure, which is a real number lying in the interval (0, 27), $ =0 for A']
We now proceed to obtain the cartesian coordinates of Pi.e. x and y in terms of a, b
and ¢.

<~
Let Q have cartesian coordinates (x, »'). [Since PQ is parallel to y - axis, P and Q

have the same x - coordinate. | Thus we have Q (a, ¢) in polar system and Q (x, )’") in Cartesian
system. By the relation between cartesian and polar co-ordinates, x = a cos ¢ and y' = a sing.

Since P(X, y) is a point on the ellipse, we have :
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2 2 .2 2
X y a  COS 14 3 3 :
az + - — 1 72‘1] a— 1 — yz = b— Sm-[i) = y =+ b Sm¢.

2
+
2 a b2

Sy

ﬁ
y=—>bsin ¢ corresponds to the y - co-ordinate of P’, the point of intersection of PN
and the ellipse. Therefore, for the point P(x, y),
we have x=a cos ¢ and y =b sin ¢.

The equations |x: acosd,y = bsind |’()g(|)<2n’

give the paramateric form of equations of the ellipse
x? Y 2
a—2 + b—2 =1; a>b . Here ¢ is the parameter.

Similarly the parametric form of equations of the ellipse

=1, a> b are given by

(x-m* , (v-k°
a’ b?

x= h+acos¢,y =k+bsm¢ |,0<¢<2m.

Note :1. The parametric form of equations of the ellipse

2 2
2>+ %5 =1, a> b can be similarly obtained as
al b

x=bcosp,y=asinp;, 0<¢<2n.

-k (=)

2. Theellipse 4 >+ =1, a> b in parametric form becomes

a b2
x=h+bcosdp,y=k+asind; 0<¢<2m.
SOLVED EXAMPLES
Example 1:

Find the equation of the ellipse with its center at origin, axes along the co-ordinate axes
and which passes through the points (2, 2) and (3, 1).
Solution :
Let the equation ofthe ellipse be
Ax*+By*=1.
This passes through the points (2, 2) and (3, 1). Hence,4A +4B=1and 9A+B=1.

Solving these two equations, we get A= % and B = % .

Hence, the equation of the ellipse is % x*+ % y=1or 3x*+5)2=32.
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Example 2 :

Find the equation of the ellipse whose latus rectumis 5 and eccentricity % .

Solution :
x2 y2
Let the equation of the ellipse be —5 + b—2 =1.
a
2 2
Then the length oflatus rectum is 2—‘2— ; hence, 25" —5orp2= 2a
a
Again, the eccentricity of the ellipse is % .
:Q:g :2—a 2 — 42 _ A2 = 2_4L=i
So, e ., 3 oLc¢ 3.Hence,b a*—c*=a 5 o -
Thus, we get i=5—aor a=2
9 g B 9 2 3 2
5a _ 45 2 )
and hence b* = 7‘7 =1 So the equation of the ellipse is x—2 + 5 =1
2 a7
)
or. 4x? + _4y2 =1 or, 20x* + 36)” = 405
) 81 45 2 y .
Example 3 :

Reducing to standard from, obtain the co-ordinates of the centre, the focithe end points
of minor and major axis, the length of latera recta and the eccentricity of the ellipse
X2+ 4P —6x—16y+21=0.
Solution :
The equation of the ellipse can be rewritten as (x* — 6x + 9)+4 (*—4y +4)=25-21=4

2 2
4 1

. | . (=) (k)
which is the equation of the ellipse in the standard form >+ > — =1

a
On comparision, we get # = 3, k=2, a?=4 and b*>= 1. Hence ¢*=a*—b?= 3. So,
(1) the co-ordinates of the center are (h, k) =(3, 2),

(i) the co-ordinates ofthe fociare (A +c, k)= (3 + \/52) ;

(ii)) the co-ordinates of the end points of the minor axis are, (b, k£b)=(3,2+1)=(3,3)and (3, 1)
(iv) the co-ordinates of the end points of major axis are, (7 + a, k) =(312,2)=(5,2) and (1, 2)
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2
(v) The length oflatus rectum = 2b” 1,

a
(vi) the eccentricitye = ~— = 23
Example 4 :
Prove that the straight line y=x+ /5 touches the ellipse x>+ 4)? =4 and find the point
of contact.
Solution :

2 2
The line y = mx + ¢ is a tangent to the ellipse x_2 + Z—z =1, if * = a*m* + b~
a

Now, the given line is y =x + /5, and the given ellipse is x* + 4)> =4

T+l -
T

So, we have ¢ = \/g,m=1,a2=4andb2=1andhencec2=a2m2+b2.

So the condition of tangency is satisfied. Hence the given line touches the given ellipse.
To find the point of contact, we have y =x + Vs ,andx2+ 42 =4
or, ¥ +4 (x+/5)2=4, or 5x* + 8/5x +16=0

orx=£—ﬁandy x+ 5= =4 5=

1
2%5 J5 5’

. .| -4
Hence, the point of contact is (ﬁ:/%} .

12.3 The Hyperbola

Definitions :
A hyperbola is a set (locus) of all points in a plane such that the difference of distances of
any point of the set from two given points in that plane is a constant.
The two given points are called foci and the line through the foci is called the axis. The
midpoint of the line segment joining the foci is called the centre of the hyperbola. The points
where the hyperbola cuts the axis, are called its vertices.

Equation of a hyperbola with centre at (0, 0) and foci along x - axis.

Let the centre of the hyperbola be O (0,0) and the focibe F, (¢, 0) and F, (—c, 0). Then
for any point P(x, ) on the hyperbola (figure on next page)
PF —PF,=a constant = +2a
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ic. \/(Jr—c)2 +(y=-0)?

_ \/(x+c)2+(y—())2
=1t 2a, or \,‘(x—c)?' +y2
= \/(x+c)2+y2 +2a

which on simplification gives,

, e
F.(c,0)%

2
Xy .
a’ b
ey

where b* = ¢? — a?, which is the
equation of the hyperbola. [In
APEF , |[PF —PF |<FF, =2a
<2c =c*—a*>0s0 we can
write b* = c?—a? |

If the hyperbola has its ’ i
centre at (0,0) and foci on y - axis — % c
at (0,+c), then proceeding as
above the equation can be

obtained as b N %
L | : e
a~ b Q) 4
where b= c?—a N /"""\/:_(57'&\ B
Now, consider the hyperbola % %,"’2’/ | N %“-c)
I ‘ ‘F;‘LO - G
Y
a’ b? '

On solving, we get y = J_rg Vx? —a® which shows that v=0forx=+a. If| x| <ai.e.

—a <x<a, theny becomes imaginary. Hence we see that there is no part of the hyperbola
between the linesx=aand x=-a.

The hyperbola extends to infinity on both the sides for x > a and x < — a, which are called the
two branches of the hyperbola. The points V| (a, 0) and V, (-a, 0) are called the vertices.
(Fig. 42) of the hyperbola and the line segment W is called the transverse axis of the
hyperbola. The line segment joining the points B, (0, b) and B, (0, —b) is called the conjugate
axis of the hyperbola. It is to be noted that the conjugate axis has no point common with the
hyperbola.
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The chords through the foci, perpendicular to the axis, are called the latera recta of the
hyperbola. The ratio e = % is called the eccentricity of the hyperbola, and e > 1, since ¢ > a.

Again, y = J_r% Vx? —a? , givesusthatforx=t¢,y=1+ % (as ¢ — a*= b?) and hence

. b* . 2
the end points of the latera recta are (J—rc == 7) and each latus rectum is of length %.

2 2
Similar consideration can also be made for the hyperbola y_2 — Z—z =1.
a

Note : Ifa = b, the hyperbola is called a rectangular hyperbola.

Equation of a hyperbola with centre (&, k) and axis parallel to x - axis or y - axis.
Consider the hyperbola with
centre at C (A, k) and let its axis be
parallel to the x- axis. Let F (¢ +4,
k) and F, (— c + h, k) be the foci Y ‘L(h : 41)
B

. . /(L (}'H- ¢ K+ %)
(Fig. 44). Then for any point P (x, y’)

(h,k+6)
on the hyperbola, we have

I)F‘1 — I)F‘2 = iza :_hlk)| ' kh'fo,k)

sk ) : F

or, \/(xfcfh)2+(yfk)2

_ \/(x+c—h)2 +(y—k)? $2a
Now, squaring and simplifying,

ety NGk €

we finally obtain,
2 2 0O X
G=m? =k
a2 b2 >
where b* = c* — a*.
Instead of axis being parallel to X- x
axis, if it is parallel to y-axis, then tlie Y
—k .
equation of hyperbola will be % AL Rkl g )
a h.ﬁfk (h*-—-‘; +&
(x — h)2 . K\/
- =1. (2
b? ) . Vi (hK+a)
The equations (1) and (2) are .
b,k ClCh, k) 6
called the equations of hyperbola U‘ i Bilh+ s k)
in standard form. The co-ordi- h,{,”’k'c V20 P
nates of the foci, the end points of (e = |.1+E,k—c)
latera recta, the vertices and the [ 2i(hy k- \

end points of conjugate axis are as
shown in the accompanying figures on
the RHS.
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Equations of tangent and normal

2
2y

Consider the hyperbola given by x—2 — b—2 =1.
a
Let a line meet a branch of the hyperbola at P (x, y,) and Q(x,, ,). Then equation of line is
Y2~ _
0-y)= 2 ). (1)
2t
Since P(x,, y)) and Q(x,, y,) are points on the hyperbola, we have —12 — b_2 =1
2 2 a
and 2 _X _ 1
a* b? .
_ 22 2 2
Subtracting we get —L——2 = 21 7J2
a2 b2
N=V2 _ ﬁ (xl +X2J
L xi—x = 2 n+m )
. B2 (x1+xp
So equation (1) becomes (y —y,) = 2 \ i+ (x—x). (2)

>
PQ, will be a tangent at P (x,y)ifQ — P along the curve ie.,y, >y andx, - x .
Taking the limit, equation (2) becomes
, 2 2
b2 X XMoo X i
-y, =—.— (x—x) or, — =— -5 =1
y y1 a2 1 ( 1) a2 b2 az bz
So the equation of tangent at (x,, y,) is,

nd P44

PR (3)

a b

ble

ay a’y,

the slope of the normal at (x,, y,) will be — By and so the equation of normal at (x, y,)
1

2
a

- an
IS(y—yl) =- b2x1 (x_ xl)

.Hence

From equation (3) it is seen that the slope of the tangent at (x, y,) is

xy-xpy o (v —xpy)
or, a2 - b2 C))

N.B. Similarly, the equation of the tangent and the normal at a point (x,, y,) to the hyperbola
2 2

y X pA%! XX]

— — 5 =lare —5 — —» =1 (Tangent) and

272 2 T2 (Tangent)
XY —xXin V1 — M

»2 =_ a—2 (Normal).
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2 2
7 =1

Points of intersection of the line y = mx + ¢ with the hyperbola x—z - ';—
a

The only vertical tangents are x = £ a, which touch the curve at its vertices.
For a nonvertical line y = mx + ¢, the x-coordinates of the points of intersection are
| 2 (mx+o)? . . o o
determined from —& - T = 1. This quardratic equation in x has discriminant
a

4a’h* (c* — a*m* + b?). So the given line intersects the hyperbola exactly at two points or
has no point in common with it according as ¢ > a*m?* — b* or ¢* < a’m?* — b?, respectively.

The condition for tangency turns out to be

2 _ 202 12

C

Corollary : The equations y = mx +ya2m? —b? always represent a pair of parallel tangents to

2 2

X y
the hyperbola — — —& =1;
P a2 b2

3

provided a*m* — b* > 0.
b

a’

If a*m? — b* = 0, then the lines y = mx £+ a%m? —b*> coincide with y = mx; m =+

STSY

But if m = £—, then the line y = mx has no point in common with the hyperbola

2 y2 x2 2
7 — 5 =las, inthiscase 5 — 5 =0.
b a

2
Note : The hyperbola _y2 — Z_z = 1 has no vertical tangent. It can be proved, as above, that the
a

line y = mx + ¢ intersects the curve at two points or has no common point with it according
as ¢* > a®> — b*m? or ¢* < a* — b’m* respectively. The condition of tangency is given by

2 =22 _p2m?

hus, y = mx +Va? —bZm? represent a pair of parallel tangents to the hyperbola :
2
Y
2
a

—

X
-2
Focus - directrix property

=1 provided a* > b*m?.

Consider the hyperbola with centre at (0, 0) and foci at (+c, 0). Then for any point P(x,
v) on the hyperbola

PF - PF, =1 2q,
where F, (¢, 0) and F, (=, 0) are the two foci. This gives PF, = PF, +2a
or, PF?=PF + 4a> + 4a PF,
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or,(x—c)}+y?=(x+c)+y?+4a2+4a (x + )% +y°
or, t4a \(x+¢)> + 1% =4a> + dcx = 4(2® + cx)

2
/ 2 2
or, (x+c) +yT = 5

x+9-
&
which shows that the distance of any point P(x, y) on the hyperbola from the point (—c, 0)

2
bears a constant ratio, grater than 1, to its distance from the line x = — ¢— . In the same

c
way, starting from PF, = PF_ + 2a we get /(x— 0)2 + ,Vz ==
2 1

a

(Taking the absolute values)

i.e. the distance of

x_a-
C
any point on the curve from (¢, 0) bears a constant ratio (> 1) to its distance from the line
x=-—.
C
Therefore a hyperbola may be alternatively defined as a locus such that the dis-

tance of every point on it from a given point is in a constant ratio, greater than 1, to its
distance from a given line.

2 2 2
The line x = + £ are the directrices of the hyperbola SIS 1.
C a,2 b2

2 2
Similarly it can be shown that the directrices of the hyperbola y—z—z—z = lare y=1= “T .
a

Parametric form of equations of hyperbola

2 2
1. Inparametric form, the equation of the hyperbola x_2 — y_2 =1 can be written as
a
X = a secd, y = b tand;
. n 3m
where ¢ is the parameter and ¢ € [0, 2n) — {57}
2 2
2. In parametric form, the equations of the hyperbola y_2 - 2—2 =1 can be written as
a

x = b cotd, y = a coseco,
where ¢ is the parameter and ¢ € (0, 2n) — {n}
Derivation of the parametric equations :
The following geometric considerations reveal how we arrive at these parametric
equations.
The circle having the transverse axis as a diameter is called the auxiliary circle of
a hyperbola.
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(1)

(i)

2
Let P (x, y) be a point on any one of the hyperbolas ‘—2 -
a
or ’ x =1
a’ b? o
Y <X
Ap' 4 v
I\ A ﬁ
X' 0 X <
N
N| V, w O v, » X Q
v
p(xa Y) 2
v
Y’ v v

Let the line through P, perpendicular to the axis of the hyperbola, meet it at N. Let
the line through N, tangent to the auxiliary circle, touch it at T in such a way that
2 2

in case of the hyperbola x_z — ;—2 =1, P and T (if different) lie in same or different
a

quadrants according as P(x, y) is to the right or left of y - axis respectively. [We say, a
point P(x, y) is to right of y - axis if x > 0 and to left if x < 0]

2 x2

In case of the hyperbola y_2 — b_2 =1, P and T (if different) lic in same or different
a

quadrants according as P(x, y) is above or below x — axis respectively. [ We say, a point
P(x, y) is above x - axis of y > 0 and below if y < 0].
Also observe that P and T always lie in the same side of y-axis in case of the

2 2
hyperbola x_2 — Z_Z =1 and P and T always lie in the same side of x - axis in case of the
a

2 2

Y X

hyperbola — — —»
Yp a2 b2
Now, let the line through T, perpendicular to the axis of the hyperbola meets the

=1.

axis at M. (Description applicable to both the hyperbolas)

The centre of the auxiliary circle is (0, 0) and its radius is a. Let T be (x, y,) in
cartesian coordinates a_r>1d (a, ¢) in polar co-ordinates, the polar co-ordinates being referred
to (0,0) as pole and QX as the initial line. Then, we have

X, =acosd, y =asing.

We now proceed to obtain the point P(x, ) in terms of a, b and ¢ for each of the
hyperbolas.
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2 2
Soppose P(x, y) ison x_2 - y—2 =1.We observe that if P coincides with a vertex, then
a
the points N, T and M also coincide with that vertex so that OM =0ON =a.
OM.ON=d%or|x |.|x|=a
But if P does not coincide with a vertex, then A OTN is right — angled at T.
So TM L ON =OM.ON=0T?iec. lx [.]x[=a%
Thus, irrespective of the position of P on the hyperbola, we have | x | | x | = a

Since T and P lic on the same side of y - axis, their x - co-ordinates i.c. x and x have the same
sign. So xx, > 0. (Neither of x, y can be Zero. Why ?)

. — — — 2 _i_ a? —
Soxx, = xx [ = x| |x21|—a =>x= X acosd = a seco.
2
X
But we have, =5 — -1
a b
x2
ny=xb,[5-1 =thtanp.
a

_)
v = —b tan ¢ corresponds to the y — co-ordinate of P/, the point of intersection of pN and

the hyperbola. So we take y = b tang.
Thus we getx =a sec ¢, y=Db tan ¢.
Depending on the positions of T in different quadrants or on the x - axis (i.c. at V,

or V,). ¢ takes its values in [0, 27) — {%3771} ¢ cannot be either % or 37“ since T can

never be on y - axis.

2 2
Similarly the parametric equations of y_z — 2—2 = 1 can be derived with the

a
restriction on values of ¢ as stated earlier. The only difference is that, in this case, OM.
ON=a" =|y|.|y |=a.

Rectangular hyperbolas :
2
If a = b in the equation x_2 — ;—2 = 1, the equation becomes x* — * = a* which is called
a

a rectangular or an equilateral hyperbola.
For any hyperbola we have b* = ¢* — a?

=a? (Z_i—lJ =a*(e*—1). (Cﬁ)

.. For a rectangular hyperbola, a = b = a*> = a’(e* - 1)
=>1=e-1
Loet=2.
Soe= \/E (- e>0)
Thus the eccentricity of any rectangular hyperbola is /2 .
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Conjugate hyperbolas :

Definition :
If transverse and conjugate axes of one are respectively the conjuagate and transverse
axes ofthe other, then the hyperbolas, so related, are said to be conjugate to each other.

y2 2 2 yz
The hyperbola b_2 — —5 = l is conjugate to the hyperbola —5 — b—2 =1.
a a

2 2 2 2
C e X
Let e, and e, be the eccentricities of the hyperboals 5 — =5 =land ~5 - 5 =
a b a

respectively.
Thenb*=a*(e*—1) oo (1)
and@®>=b* (e —1) oo (ii)
From (i) and (ii), we get
1
822 -1 .

2_ 1=
ell

This implies that (e*—1) (e - 1)=1
=>e’te’=e’e}

S T T
€l €2

SOLVED EXAMPLES
Example1:
Obtain the equation of the hyperbola with eccentricity % and fociat (2, 0).

Solution :
Since the fociare at (+ 2, 0), the centre of the hyperbola is at (0, 0) and the transverse

2 2
axis is along the x— axis. Hence the equation of the hyperbolais, =5 — b_2 =1.
a

The focii of the hyperbola is at (+ 2, 0), givesc=2. Now e= % = % gives — = % ,
soa= 4
3
16 20
12 _p2=gq_ 8 = Y
Hence, i*=c*—a*=4 9 9 -
2,2
.. The equation of the hyperbola is 3{—6— 0 =1
9 9

2 2
9x 9y =1 2 2
L = =1, or45x* - 36y° = &0,
ot 16 20 ’ x Y
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Example 2 :
Find the co-ordinates of the vertices and ends of latera recta of the hyperbola with

fociat (0,+4)and y = % as one of the directrices.

Solution :

2 2
Since the foci are on the y - axis at (0, £ 4) the equation of the hyperbola is y_2 —2—2 =1.
a

a2

The equation of the directrices are therefore y = + o

It is given that y =% is one of the directirces.

2
Hence, a? = % . Since the foci are at (0, + 4). We have ¢ = 4, and therefore, aT = %

or a>=6.
2 2

Now, b*=c*—a*= 16— 6 = 10. So the equation of the hyperbola is, %—’f—o =1.

The co-ordinates of the vertices are (0, + a) = (0, = 4/6).

d

H-
—_
=

H-
=Y

—

2
) b
The ends of latera recta have co-ordinates = (J—r —, * C] = (

Example 3 :

Reducing to standard from, find the co-ordinates of the centre, the foci, the verti-
ces and the equation of directrices of the hyperbola.
9x? — 4y* - 36x + 16y — 16 = 0.

Solution :
The given equation can be written as, 9 (x> —4x +4) —4 ()* —4y +4) =36

2 2
or, (x ;2) W _92) = 1, which is a hyperbola with centre (2, 2). Again a* = 4 and

*=9givesc?=a’ + B*=13;c=+ [13.

Hence the co-ordinates of the foci are the points (2 V13 , 2) and the co-ordinates
of the vertices are (2, £ 2, 2) i.e. (4, 2) and (0, 2).

2
The equation of the directrices are x = h + a? =2+

ﬁn
(98]

Example 4 :
Find the equation of the tangent to the hyperbola 2x* — 3)? = 1, which is parallel to
the line 3x —y +1=0.
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Solution :
The equation of a line parallel to the line3x—y+1=01s3x—y+c=0
or, y=3x+c.
- - - 2 2
Again, the line y = mx + c is a tangent to the hyperbola, x_2 — y_2 =1
a b
if &2 = a*m?* — b°.
Hence, y = 3x + ¢, will be a tangent to the hyperbola
2 2
22— 3p=1lor, £ - L -
1 1
2 3
. 1 _ 9 1 _ 25 5
if, &2 =(—) -5 =5- 5 = == or, c=+——.
2 3 2 3 6 J6
. . 5
Hence, the equation of tangent is y = 3x +——.
q g y NG
EXERCISES 12 (b)
1. Fill in the blanks by choosing the correct answer from the given ones :
(a) The equation of the directrix to the parabola x* = — 6y is ——.
[y+6=0,2y-3=0,y—6=0,2y+3=0]
(b) The eccentricity of the parabola y* = 8x is —. [2,8,0,1]
(¢) The line y + x = kis a tangent to the parabola )? + 12x =0 if k= —— (-3, 3, 6, —6)
(d) The latus rectum of the parabola (y — 2)* = 8(x +3) is ——. (2,4,8,10)
(¢) The equation of tangent to the parabola x* = 6y at its vertex is —.
—0 v=0 y= =3 ,-—3
(x_Osy_Oax_ zay 2)
2 2
(f) The equation of the axis of the ellipse )16_6 + %= lis—.(x=4,y=3,x=0,y=0)
. o . x+ D2 -2 _ .
(g) The equation of the major axis of the ellipse TRET: =1is —.

x=4,x=-1,y=5,y=2)
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(b

(M
@
)

(M

(m)

()

(0)
(p)

The distance between the foci of the ellipse 3x* +4y* =1 is —. [1ﬁ % —Z\IEJ
2 2 4 5 3 16)

.. . X y — e 0 Z 2 =¥

The eccentricity of the ellipse Tt 55 lis—. (5 © 47 5 75
The line y = 2x + k is a tangent to the ellipse 5x* + > =S ifk=— (2,5, 3,V21)

2 2

ee X=2)T )T (i 2§§)

The length of latus rectum of the ellipse A + s lis \35°5°53

. . . 2 +? .
The equation of the conjugate axis of the hyperbola R T =1lis —.

(x=0,x=3,y=-3,y=4)

2 2
The hyperbola Jli—6 X _=1 interesects x-axis at ——[(0, +4), (£2V3,0), (2, 0), no where]

12
. . . 4 3 421 7
The eccentricity of the hyperbola 4x* — 3y* =1 is ——. (3’2’_3 203 ﬁ)
2 2 16 9 1 32
X Y g — 16 7 1 52
The latus rectum of the hyperbola 5 TI6 lis . ( 9°16°9°9 )

The line y = 3x — k is a tangent to the hyperbola 6x* —9y* =1 if k = —.

(%)

2. Mention which of the following statements are frue (T) or false (F) :

(a)
(b)

(©)

(d)
(e

()

(2)

(h)

Q)

The equation y = x* + 2x + 3 represents a parabola with its axis parallel to y -axis.
The latus rectum of the parabola y* = — 8x is 2.

The eccentricity of the parabola (y — 1)*’=4 (x + 3) is 1 1

The line y = 3 is a tangent to the parabola (x + 2)* = 6(y 3).
The equation Ax* + By? = 1 represents an ellipse with its axis parallel to x-axis If A >B>0.

2 2
The foci of the ellipse %+y7 = 1 are the points (x1, 0).

2 2
The equation of the ellipse with foci at (0, £ 4) and vertices (0, £7) is E*% =1.

2 _
The length of the latera recta of the elhpse7 + yT =1 and (x 22) + W 91) =1 are

equal.

2 N2
The equation of the latera recta of the ellipse (x Ig) + W 91) arex=4 +./7.
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. . . . .2 v2
(j) The line y=x+ 2 is a tangent to the ellipse ‘T + T =1.
x? J’Z
(k)  The conjugate axis of the hyperbola = — b_2 = 1 meets teh hyperbola at two points which
a
are at a distance 25 from cach other.
a2 2
(I) The conjugate axis of the hyperbola (y 93) _G +32) =1 is parallel to the line x = 4.
(m) The length of the transverse axis of the hyperbola with foci at (£ 5, 0) and vertices at
(£2, 0)is 10.
2 2
(n) The latera recta of the ellipse%— J1/_6 = 1 are the same.
(0) The y-axis is tangent to the hyperbola ay* — bx*> = 1.
3. Find the equation of the parabola in each of the following cases.
(a) the vertex at (0, 0) and focus at (0, 3),
(b) the vertex at (0, 0) and directrix x — 2 =0,
(c) the vertex at (6, —2) and focus at (-3, -2),
(d) the vertex at (-2, 1) and focus at (-2, 4),
(e) the length of the latus rectum is 6 and the vertex is at (0, 0), the parabola opening to
the right,
() the vertex is at (0, 0), the parabola opening to the left and passing through (-1, 2),
(g) the vertex at (0, 0) the parabola opens downwards and the latus rectum is of length 10,
(h) the axis is vertical and the parabola passes through the points (0, 2), (-1, 1), (2, 10),
(1) the axis is horizontal and the parabola passes through the points (2, —1), (-2, —4) and
(-1, 3),
(j) vertex at (1, 3) and directrix x + 3 =0,
(k) Vertex at (1, —1) and directrix y — 2 = 0,
(1) the focus at (-2, 3) and directrix 3x + 4y — 2 =0.
4. Find the equation of the ellipse in each of the following cases :
(a) centre at (0, 0), one vertex at (0, —5) and one end of the minor axis is (3, 0),
(b) centre at (0, 0), one vertex at (7, 0) and one end of the minor axis is (0, —5)
(¢) fociat (£ 5, 0) and length of the major axis is 12,
(d) vertices at (£5, 0) and length of latus rectum is %
(¢) centre at (5, 4) and the major axis is of length 16 and the minor axis is of length 10.
(f) centre at (=3, 3), vertex at (=3, 6) and on¢ end of minor axis at (0, 3).
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€y

(b

(1)
@
k)
(M

centre at (0, 0), axes parallel to co-ordinate axes, eccentricity is f and the minor axis is
oflength 5,
V3

centre at (0, 0) axis parallel to co-ordinate axes, eccentricity iST and the ellipse passing

through the point (\/5 , %) ,

centre at (0, 0) one end of the major axis is (-5, 0) and eccentricity % ,

axis parallel to co-ordinate axes, the centre at (0, 0) and the ellipse passing through
(3,-2) and (-1, 3),
centre at (3, 4), axis parallel to x-axis and passing through (6, 4) and (3, 6),

V7

centre at (-2, 1), axis parallel to y-axis, eccentricity is 1 and the ellipse passing

through (-2, 5).

. Obtain the equation of the hperbola in each of the following cases :

(a)
(b)
(¢)
(d)
(e)
D

(2)

(h)
(1)

@

foci at (£ 4, 0) and vertices (£2, 0),

foci at (0, £ +2) and vertices (0, +1),

centre at (0, 0) transverse axis along x-axis of length 4, and focus at (2V5, 0)

centre at (0, 0), conjugate axis along x-axis of length 6 and eccentricity 2,

focii at (¥2 V3, 0) and eccentricity V3,

centre at (0, 0) transverse axis is along y-axis, the distance between the fociis 14 and
distances between the vertices is 12,

centre (1, —=2), transverse axis parallel to x-axis of length of 6 and conjugate axis of
length 10,

centre at (2, —3), eccentricity % and hyperbola passing through (5, -3),

centre at origin, axis perpendicular to y - axis, the hyperbola passes through the points
(3,-2) and (5, -7).

The transverse axis parallel to y - axis, the hyperbola passes through the points (% ,0) ,

(1, 2) and its centre is the intersection of the linesx +y—-6=0,4x—-y+1=0

Reducing to standard from, obtain the co-ordinates of the vertex, focus, end points of the
latus rectum, the length of latus rectum, the equation of axis and directrix of the follow-
ing parabolas;

(a) y»—4x+4y-1=0 (b) 2x*—4y+6x—-3=0

(c) ¥*+x+ty+1 =0 (d »+14y —3x+1=0.
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7. Reducing to standard form, obtain the co-ordinates of centre, the foci, the vertices, the end
points of minor -axis, the end points of latera recta, the equation of the directrices and the
eccentricity of the following ellipse :

(@ 3x*+4)2+6x+8—-5=0 (b)y 4x*+87+4x+24y-13=0
() 2x*+3)? 12x+24y+60 =0 (d) 9Ix*+4y* +36x-8y+4=0.

8.  Reducing to standard form, obtain the co-ordinates of the centre, the verties, the foci,
the end points of conjugate axis, the end points of latera recta, the equation of directrices
and the eccentricity of the following hyperbolas :

(a) x* -2y - 6x—4y+5=0 (b) 9y* —4x*—90y +189=0
(c) 49x*—4)? -98x+48y—-291=0 (d) 3x*-2)? -4y —26=0.

9.  Prove that the equation of the parabola whose vertex and focus are at distances o and
from origin on x-axis respectively is )2 =4 (B — o) (x — o).

10. Find the locus of the points of trisection of a double ordinate of the parabola y? = 4ax.

11. (a) Prove that a double ordinate of the parabola )* = 4ax of length 8a subtends a right
angle at its vertex.
(b) Find the angle which a double ordinate of length 2a subtends at its vertex and
focus.
12. (a) Obtain the equations of the tangent and normal of the parabola y* = 4ax at a point
where the ordinate is equal to three times the abscissa.
(b) Find the equation of tangents and normals to the parabola y* = 4ax at the ends of its
latus rectum.
(¢) Find the equations of tangents and normals to the parabola y* = 4ax at the points
where it is cut by the line y = 3x — a.
(d) Show that the tangent to the parabola y* = 4ax at the point (a', ') is perpendicular

. [az —4a2J

to the tangent at the point ?, Sk

(e) A tangent to the parabola y* = 8x makes an angle 45° with the line 3x —y + 5 =0.
Find the equation and the point of contact.

(D Prove that for all values of &, the line y =k (x + a) + %is a tangent to the parabola
v =4da (x + a).

(g) Obtain the condition that the line /x + my + n = 0 will touch the parabola )* = 4ax.

(h) Prove that the line 4x — 2y — 1 = 0 touches the parabola whose focus it at (0, 0) and
directrix is the line y = 2x — 1.

13. (a) If(-2, 0)and (2, 0) are the two vertices of a triangle with perimeter 16, then obtain

the locus of the third vertex.

(b) A point in a plane is such that the sum of'its distances from the point (2, 2) and (6,
2) is 12. Find the locus of the point.

(c) Obtain the equation of the ellipse which has its centre at origin, a focus at (2, 0)
and the corresponding directrix is the line 2x = 7. Calculate the length of the latus
rectum.
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14.

15.

16.

(d)

(@)
(b)

(©)
(d)
(e)

(D

(2)

(a)

(b)
()

(a)
(b)
(©)

(d)

(e)

Find the equation of'the ellipse which has its centre at (—1, 4), eccentricity % and the

ellipse passes through the point (3, 2).

x2

2
Find the equation of tangent and normal to the ellipse 16 + % =1 at the point (% , V5 ) .
Find the equations of tangents and normals to the ellipse 2x* + 3y* = 6, at the end points
of the latera recta.
Prove that the line y = 2x + 5 is a tangent to the ecllipse 9x* + 4y* = 36 and find the
point of contact.
Find the equation of the tangents to the ellipse 4x* + 5y = 20 which are parallel to
the line x —y = 2.
Find the equation of the tangent to the ellipse 4x* + 9y* = 1, which are perpendicu-
lar to 2ax+y—-1=0.

2 2
Prove that the line x cos a. + y sin a = p touches the cllipse x—2 + Z—2 =1.
a
if p*=a*cos’ a+ b?sina.
Prove that the product of the distances of the foci from any tangent to the ellipse
2 2
X+ Lo~ s equal to 2.
a’ B> d
Find the equation of the hyperbola which has its foci at (0, 0) and (0, 4) and which

passes through the point (12, 9).
Find the equation of the hyperbola with foci at ( 3, 0) and directrices x = £ 2.

Find the foci and latus rectum of the hyperbola whose transverse and conjugate
axes are 6 and 4 and centre is at (0, 0).

Find the equation of tangent and normal to the hyperbola x* — 6)* = 3 at the point
(-3,-1).

Find the equations of the tangent to the hyperbola 4x* — 11y* = 1 which are parallel
to the straight line 20x — 33y = 13.

Find the equation of tangents to hyperbola 9x* — 16y* = 144 which are perpendicu-
lar to the line 2x + 3y = 4.

Prove thhat the line x + y + 2 = 0 touches the hyperbola 3x* — 5y* = 30 and find the

point of contact. Find also the equation of normal at that point.
2 y2
Prove that the line x cos o + y sin a = p touches the hperbola x—2 - = 1 if
a b
p*=a* cos? a— b’ sin‘a.



(CHAPTER 13)

Introduction to Three-dimensional Geometry

There is no branch of mathematics, however abstract, which may not
some day be applied to phenomena of the real world.
- Lobachevsky
13.1 SPACE AND ITS DIMENSION :

In plane geometry we have taken point, line and plane as undefined terms. We have axioms introducing
line and plane as sets of points. Our geometrical universe, hitherto, has been a plane. We have discussed the
geometry of lines, circles, parabolas, ellipses and hyperbolas. All of these are subsets of a plane.

In highschool-mensuration you have studied cuboids, cubes, spheres, cylinders and cones under
application of geometry. None of these is a subset of a plane. To bring them into the theoretical fold of geometry
we require a geometrical universe that would contain points not all of which are coplanar (lie on a plane).

For this purpose we bring another undefined term, ‘Space’ into our axiom-system.
Axiom - 1 : A space is a nonempty set of points.

Axiom- 2 : [f P and Q are distinct points in space S, then % < Sand if wis aplane containing P and Q,

then % cncS.

Axiom - 3 : Given any three noncollinear points P, Q, R in space S, there 1s exactly one plane n such that
{LQR}crcS

Axiom-4 : If n and 7, are two distinct planes in a space and P is a point such that P € m, ~ m,, then there
exists another point Q different from P such thatQ e ® N 7,.

Definition (convex set) : A subset A of a space 1s said to be a convex set if, for all P, Q € A, m cA.

Axiom -5 : If mis a plane in space S then the points of S not contained in m are divided into two disjoint
nonempty convex sets S, and S, such that

PeS QeS,= % N O.

(S, and S, are called the two sides of the plane).
Note : If a point belongs to a space we also say that the point lies on/in that space.
Dimension of a space :

Definition : A space is said to be of dimension zero, one, two or three according as it comprises of a single
point, line, plane or contains points not all of which are coplanar.

Note : Unless stated otherwise, the term, ‘Space’ shall mean a three dimensional space.
13.2 Lines and planes in space :
Position of a line in relation to a plane :

Definitions :

1. AlineLissaid to lieinfon aplane tif Lc .

2. A line L 1s said to intersect a plane mwif it does not lie on w and has a point in common with the plane
te. LerandL nr=¢.

N.B. : It can be proved that L ~ © contains exactly one pointif L~ n# ¢ and L & ni.e. ifa line

intersects a plane, it does so at exactly one point. For, if P and Q are distinct points in L~ 7, then clearly L= %
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c 7, by axiom-2. Therefore L lies on ©t, which is impossible by the definition of intersection. The definition
demands that the line must not lie on the plane.

3. Alinel,, not lying on a plane m, is parallel to it, written as I || 7, if it has no point in common with the plane
re.Lnn=¢.
Notes :

(i) If follows from the definitions of intersection and parallelism that a line must either intersect a plane or
be parallel to it if 1t does not line on the plane.

(ii) Ifa point P or a line L lies on a plane, it 1s also said that the plane passes through P or L.
Lines in Space

1. Intersecting lines : Lines L and L, intersect each other if they are distinct (not coincident)
and L nL =¢.

N.B. : It is proved in plane geometry (by taking, ‘there is exactly one line containing two distinct points'
as an axiom) that there 1s just one point common to two intersecting lines.

2. Parallel lines : Distinct lines L, and L, are called parallel if they are coplanar and have no point in
common.

3. Skew lines : A pair of non-coplanar lines are called skew.
Notes :

(i) It follows from axioms - 2 and 3 that there is exactly one plane passing through two intersecting lines.

(ii) We shall explain later that there 1s exactly one plane passing through two parallel lines.

(iii) An example of skew lines :

There is no concept of skew lines in plane-geometry as, the universe being a single plane, we cannot talk
of noncoplanarity.

Skew lines occur only in a three dimensional space.

Consider noncollinear points P, Q, R in a three dimensional space. By axiom-3 there is only one plane, say
m, passing through P, Q and R. [The picture shows only a fragment of this plane] Since the space 1s three
dimensional, we can find another point (in fact, infinitely many), say T which does not lie on the plane .

T

P /
/ ’
Q
/ n
Planes in Space :

Parallel planes : Distinct planes , and n, are called parallel, written as n, || 7, if they have no point in
common i.e. T AT, = ¢.

Intersecting planes : Planes ©, and &, are said to be intersecting if they are distinct and n, ~ 7, # ¢.

Let us have a closer look at this definition. Since m, m 7, # ¢, there is a point P in the space such thatP e m,

> >
PQ and RT arenoncoplanar, hence skew.

<
N 7,. By axiom-4, there exists another point Q, different from P such that Q € n, ~x,. Hence by axiom-2, PQ <

. <> . e
nt, " m,. Further, no point other than those on PQ can belong torr, nm,. Forif R ¢ PQ and R € m, ~ m, we get

three noncollinear points P, Q, R such that they lie in 7, as well as n,. So by axiom-3, © and 7, must be one and
the same plane, which is impossible as n, and m, are supposed to be distinct planes. Thus it follows that if two
planes intersect, they must intersect along exactly one line.

In other words, there cannot be more than one lines common to two different planes.

Note : There is exactly one plane containing two distinct parallel lines, for otherwise, there shall be two
lines common to more than one number of planes.
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Perpendicular (Normal) to a plane :
Definition : A line intersecting a plane at a point P 1s said to be perpendicular to the plane at P if it is
perpendicular to every line lying on the plane which passes through P.

13.3 Properties of lines and planes in space

The following facts regarding properties of lines and planes in space form the basis of further discussions.
These can be proved by application of elementary methods of plane-geometry with the help of the axioms already
stated in 15.10.

Fact-1: Ifa line L is perpendicular to two intersecting lines I and L, at their point of intersection, say P,
then L is perpendicular to the plane of L, and L, at P.

P is called the foot of the perpendicular upon the plane.

Fact - 2 : There is exactly one line perpendicular to a plane at a given point on it. Also there is exactly one
line perpendicular to a plane from an external point.
Fact-3 : (Three perpendiculars)

<>
PQ 1s perpendicular to a plane 7 at a point Q on it. L is a line on plane 7 and it does not pass through Q.

If QR 1s perpendicular to L. atR, then PR 1s also perpendicular to L.

N

Q R

I

In plane-geometry it follows from the angle-construction axiom that there is exactly one perpendicular to
a line at a given point on it. But in a three dimensional space, as you have just seen, there can be several
perpendiculars to a line at a given point on it. However, at a given point there 1s just one plane perpendicular to
aline.

Fact - 4 : The perpendiculars in space to a line at a given point on it lie on exactly one plane which is
perpendicular to the line at that point. (Ifa line s perpendicular to a plane, the plane 1s also called the perpendicualr-
plane to the line)

L (The perpendiculars L, L, L.

22773

L etc. totheline L at P lie on
P T the planem.)

VL

Fact-5: Any two perpendiculars to a plane are parallel.
Fact- 6 : Of two parallel lines, 1f one 1s perpendicular to a plane, then the other is also perpendicular to the
same plane.

(L,IL,L, Ln
=L, Ln)
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Set of parallel lines in space : Definition :
A set of lines 1n space are called parallel if any two of them are parallel.

Common Transversal : Ifa line L intersects a set of lines {L., L, L, ........ L } then Lis called a common
transversal of L, L, L, ..., L .

Fact-7: Asetof parallel or concurrent lines in space, having a common transversal, are coplanar.

Fact-8:IfL.,I and L/, L areintersecting pairs of lines in space such that L, [|L,"and L, || L,’, then the

anglebetween L, T, and L,", L, are of equal measure.

13.4: Rectangular Cartesian Coordinates in space :
<> <>
Let X' X, and Z'Z be mutually perpendicular lines in space intersecting one another at the point
<~ >

<>
O. The point O is called origin and the lines X’ X, Y'Y and Z'Z arenamedrespectivelyas X, Y and Z-axes.
<>
These lines are also known as coordinate axes. The planes containing the pairs of intersecting lines (X'X,
<~ <~ <> )
Y'Y), (Y'Y, Z'Z) and (Z' Z, X' X ) are called coordinate planes named respectively as XY, YZ and ZX-

planes. The X, Y and Z-axes are respectively perpendicular tothe YZ, ZX and XY-planes. (Fact-1). The system of

axes thus obtained is known as rectangular or othrogonal system of coordinate axes.

z X!
002
N ‘ ! / R(0y.2)

(x,0,2) s P (x|y.2)
o]
i y
Y (©.Y,.0)
X,0,0) L
¢ )X s Q (xy,0)

Let Pbe a point in space. There can be exactly one line through P perpendicular to the XY-plane. Let this
perpendicular intersect the XY-plane at Q. Let the lines through Q perpendicular to the X and Y - axes intersect
them respectively at L and M. Let the plane through P perpendicular to Z-axis intersect it at N.

We now associate an ordered triple of real numbers (X, y, z) with the point P by the following definition.

Definition : The point P-has coordinates (x, vy, z)

- —>

OL,if L e0X OM, if M eOY
wherex = . - y= ) —
-OL,ifL eOX' —OM,ifM € OY’

. —>
and 7= ON, if N eOZ

—
_ON,ifN e0Z' . .
We choose the same scale to measure distances on the coordinate axes. The real numbers X, y, z thus

associated with P, are respectively known as the x, y and z-coordinates of P.

Notes :
@) It is obvious from the definition that the origin has coordinates (0, 0, 0).

- - — . - - N
(ii) OX, OY and OZ are called the nonneé)atlve_))(, Y and_) Z-axes and OX', OY’ and Q7'
nonpositive X, Y and Z-axes respectively. OX, QY and QZ are also known as the positive

- = >
directions and OX', OY' and OZ’ are known as the negative directions of the X, Y and Z - axes.
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(iii) The coordinate axes as shown in the figure constitute a right
handed system. As an informal aid to understanding, it may be Ax
observed that 1f a right handed screw placed it) origin 1s turned
as shown m figure 15.6, it will move along OZ . o
Observe that if the points in any one of the pairs (X, X'), (Y,

Y"), (Z, Z") are reversed in position or any one pair of axes are
mterchanged, we get a system which 1s known as a left handed x Lz'
system.

(iv) The above system of coordinates is known as the rectangular cartesian coordinate system, named
after the French mathematician Rene Descartes (1596-1650). By taking oblique axes an oblique
coordinate system can also be obtained. There are also certain other types of coordinate systems
such as the cylindrical and the spherical coordinates. But we shall stick to the rectangular Cartesian
system.

One-one correspondence between a 3-dimensional space and R* = {(x, y, z)[x, ¥, Z € R}.

It can be argued from axioms - 2 and 3 regarding space and the axioms of plane geometry that a three
dimensional space 1s a continuum of points which intuitively means that any point we can think of, belongs to
this space. There is no gap in this space. For this reason a three dimensional space is also called a solid space and
the geometry concerned is known as solid geometry.

From the uniqueness of perpendicular to a plane (either from an external point or at a point on it), it follows
that the real numbers x, v, z associated with a point are unique and conversely, given any ordered triple of real
numbers (X, y, z) we can get a unique point in space.

Thus the points in a three-dimensional space are in 1-1 correspondence with the set R*= {(x,y, 2)|[x, y, z €
R}. So we identify a point in space as an ordered triple of real numbers. The geometry that is based on 1dentification
of a three dimensional space with R? is known as coordinate/analytical geometry in three dimensions or analytical
solid geometry.

Alternative ways of determining space coordinates :

1. See figure 15.5. It follows from fact-3 (three perpendiculars) that P[. and PM are respectively
perpendiculars from P on X and Y-axes. So each of the coordinates x, y, z of P can be regarded as the “signed’ or
‘directed’ distances from origin to the foot of the perpendicualr from P on the respective coordinate axes. By
signed/directed distance we mean distance accompanied by a positive or negative sign. While determining
coordinates the distance from origin to the foot of the perpendicular from P on an axis is given a positive or
negative sign according as the foot of the perpendicular falls on the positive or negative axis. If it falls on the
origin then the concerned coordinate becomes zero.

2. By passing planes through P parallel to the coordinate planes we can construct a cuboid as shown in
figure 15.5. The coordinates (x, y, z) of P are the perpendicular distances of P from the YZ, ZX and XY-plane
accompanied by positive or negative sign according as P lies in the side of YZ, ZX and XY-planes containing
respectively the positive or negative X, Y and Z-axes.

For example in figure 15.5, x = OL = MQ = PR = perpendicular distance of P _f)rom the YZ-plane. Here
positive sign accompanies the distance PR as P 1s in the side of YZ-plane containing QX or the positive X-axis.
How to locate a point with given coordinates in space :

Given the coordinates (x, y, z) we can locate the point, say P having these coordinates by the following
procedure described in intuitive language.

—> —
First proceed a distance OA = [x| along OX ifx>0oralong OX' ifx <0. [fx =0, remain at the origin i.e. the
point A coincides with the origin.
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Then proceed a distance AB = |y| along a line parallel to Y-axis z
1n the positive direction 1f y > 0 or in the negative direction if y < 0. If ’
y =0, the point B coincides with Ai.e. do not move atall. Finally, from , (xy.2)
B proceed a distance BP = || along a line parallel to Z-axis in the Y€ — — A5 y

positive direction ifz> 0 or in the negative direction ifz< 0. Ifz=0, P A B

coincides with B. X z' (Fig. 15.7

The point P has coordinates (x, y, z) which we express by writing P(x, y, 7).

The Octants : It follows from axiom - 5 that each coordinate plane divides the set of points not lying on it
into two disjoint convex sets. Thus the three coordinate planes intersecting at origin divide the set of points not
lying on any of the coordinate planes into eight disjoint convex sets known as octants. Taking into account the
identification of a three dimensional space with R*® we can describe the eight octants as follows :

1.OXYZ={xy.2)eRPx>0,y>0,z>0}

2.0XYZ={x,v,z) e R [x<0,y>0,z>0}

3.0XY'Z={(x,y,2) e R*x<0,y<0,2> 0}

4. 0XY'Z={xv,z) eR*x>0,y<0,z>0}

5.0XYZ' = {(x,v,2) e R [x>0,y>0,z<0}

6.0X'Y7Z' = {(x,y,2) e R*x<0,y>0,2<0}

7.0XY'Z={xv,z) eRx<0,y<0,z<0}

8.0XY'Z ={(x,y,2) e R*|x>0,y<0,z<0}

Projection of a point on a line or a plane

Definition : The projection of a point on a given line or plane is the foot of the perpendicular from that
point on the given line or plane. If the point lies on the given line or plane then its projection is the point itself.

Ilustration : 1. See figure 15.5. Q 1s the foot of the perpendicular from P on the XY-plane. By definition of
coordinates, Q has coordinates (X, y, 0). So projection of P(x, y, z) on the X Y-plane is given by Q (x, v, 0). Similarly
projections of Pon the YZ and ZX-planes are given by R(0, y, z) and S(x, 0, z) respectively.

I __

2.Since PL 1 X'X and PM L Y'Y, projections of P(x, y, z) on the X and Y-axes are given by L.(x, 0, 0)
and M(0, y, 0) respectively. Also the projection of P(x, y, z) on the Z-axis is given by N(0, 0, z).

Exercise : Find projections of the point (2, 3, —6) on the coordinate axes and the coordinate planes.

Answer : Projections of (2, 3,-6) on X, Y and Z-axes are given by (2, 0, 0), (0, 3, 0) and (0, 0, —6) respectively.

Projections of (2, 3, —0) on the XY, YZ and ZX-planes are (2, 3, 0), (0, 3, —0) and (2, 0, —6) respectively.
Projection of a segment on a line or a plane :

Definition : If P’ and Q' are projections of P and Q on a given line or a plane, then P’ Q' 1sthe projection
of the segment PQ on the given line or plane.

13.5. Distance between two points in space : 7 Q
The distance between the points P(x,, y,, z,) and Q(X,, y,, z,) 1s given by P Or

PQ= (%, —x2)% +(v; — o) + (21 —25)°

Proof : Let P’ Q' be the projection of PQ on the XY-plane.

- N 0]
PP’ and QQ' are parallel (Fact-5). So Pp’ and Q(QQ' are coplanar y
and PP'Q’Qis aplane quadril_a)teral. x/ pr O o

Let R be a point on QQ’ so that PR || PPQ .
Since P'()’ lies on the xy-plane and W 1s perpendicular to this plane, it follows from the difinition of

perpendicular to a plane that ppr L P'QQ’. Similarly QQ’ L P'Q’- PR being parallel to P'Q’ . it follows from
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plane-geometrythat PP'Q'R is arectangle. SoPR =P'Q' and ZPRQ is arightangle.
P’and Q' being projections of P(x,, y,, z ) and Q(x,, y,. z,) on the xy-plane, they are given by P'(x .y, ,0) and
Q'(x,, ¥,, 0). Therefore by the distance formula in the geometry of R?,

PrQ= \/(Xl —X2)2 +(v1 —yz)z
In the rectangle PP'Q'R,
PP=QR
Therefore QR =z, 2z |
In the right angled triangle PRQ, PQ? = PR?+ R
=X =X )Y,y (7,2

= PQ= \/(Xl_xz )2+(Y1_Y2 )2+(ZI_Z2 )2

Notes :
1. Distance of P(x, y, z) from origin is given by
OP= | [x*+y*+z’
2. IfL, M, N are projections of P(x, y, z) on X, y and z-axes respectively, then

PL= \y*+7® ,.PM=/7* +x* ,PN= |/x* +y*

13.6 Division of a line segment in a given ratio. Internal and External Division formula :
IfR(x, y, z) divides the segment joining P(x,,
y;» ) and Q (X,, ¥,, z,) internally in ratiom : n Le.
PR m mx, + nx, _my, +ny,

=—, then X= ,
QR n m+n m+n 2 Q(X,,y,z,)

mz, +nz, &
and Z=—""— R
m+n 22 N

Prof — Let P, Q" and R’ be the feet of the 3
perpendiculars from P, Q and R on the xy-plane. (Fig P v

15.9) Being perpendiculars on the same plane EP’ ,
— —
QQ" and RR’ areparallel lines (Fact-5). Since

. >
these parallel lines have a common transversal P() ,

they are coplanar. (Fact-7) Let M and N be points on

=y

RR’ and QE Q' such that W 1 ER’ and <R_N)

— | Y,,0
1 QQ' . Since P, R’ and Q' are common to the xy- X pi —R! Q (%¥20)
(%,,¥,,0) (x,y,0)

plane and the plane of PP7, QQ’ and RR’ , they
must be collinar because two planes intersect along a
line.
It follows from the definition of perpendicular to a plane that ZPP'R’, ZRR'Q’ and ZQQ'R’ are all right
angles. It now follows from plane-geometry that PPR™M and RR'Q'N are rectangles. Also triangles RPM and QRN
o m PR PM PR’
are similar. Hence n RQ RN R'Q

(*- PM=PR and RN =R'Q'in the corresponding rectangles)
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Thus the point R’ divides the segment P'Q" internally in the ratiom:n.

P’R"and Q' being projections of P(x,, y,, z,), R (X, ¥, z, ) andQ (X, y,. Z,) on the xy-plane have coordinates
respectively (x,,y,,0), (x,y,0) and (x,,y,,0).
If we restrict our considerations to the xy-plane only, we can regard the points P’, R’ and Q' as having
coordinates (X,,y,), (X, y) and (X,, ¥,).
Thus, P0>n l{he xy-plane the point R'(x,y) divides the segment joining P'(x,y,) and Q'(x,,y,) internally in
'R" m

ratio given by ﬁ— 0

. . L mx, +nx,
Therefore, it follows from the internal division formula of the geometry of R? that x = —+ an
m-+n
y= my, +ny,
m-+n

Similarly considering projections of P,Q, R on another coordinate plane, say YZ - plane we can prove
_mypiny, _mzyinz
- z=

m+n m+n
Thus we have

X=

mx, + nx, my, + ny, mz, + nz,
A L™
m—+n Y m-+n m+n
External Division Formula

If R(x.y, z) divides the segment ﬁg joming P(x,,y,,z,,) and Q(x,.y,.z,) externallyn ratiom :n

PR m

ie. QR 1 > then

MmXo,—NX; Myp,—Ny; mzZy—nz;
X= Y= V2=
m-n m-n m-n

The above formulae can be proved by taking projections on any two coordinate planes and applying
the external division formula of the geometry of R%.
Notes :

1. The midpoint of % is given by
(xl +X, v, +Y, Z,+7, J

) )

2 2 2
2. If R divides % inratio A : 1 then coordinates of R are given by
X +Ax%, y:yl +Ay, , 4 +AzZo

1+ 1+ 1+
in case of internal division and by

-\ -\ -
>(=X11_kx2 ,y=y11_ky2 ,Z= 211_;2 ; in case of external division, A # 1.

>
3. If P(x,,y,,z,) and Q(X,, y,, z,) are distinct points then the coordinates of any point on PQ exceptQ are

. X tHX, Yy, tuy, zZ,+pg,
given by l+p ° l+n  l+n cpeR p=-1.
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Solved Examples
Example - 1
Find the distance of the point P (x, X, z,) from
(1) the coordinate axes
(1) the coordinate planes
Solution
Projection of P(x, X,, z,) on X, y and z axes are reopectively given by P, (x,, 0, 0), P,(0,
¥,» 0) and
P.(0,0,z).

So distance of P from x-axis

=PP = oy —x0) P+ (00 =00 + (25, =00 =4y, +2,
Similarly the distances of P from y and z - axes are given by

PP,= {x,> +z,% and PP, = y/x > + p,°

Projection of P(x,y,.z,) onxy - plane is the point Q (x,.y,,0). Similaryly is projections
on yz and zx-planes are given by Q,(0,y,,z,) and Q,(x,.0,z,).

So the distances of P from xy, yz and zx- Planes are given by

PQ,= |(ry —x0) > + (g —7)> +(z4 -0 ={z,2 =12,

and PQ_= | x| and PQ, = | y, | respectively.
Example - 2

Prove that the points A(2,3.2), B(5,5,6) and C(-4,-1,-6) are collinear.
Solution

As in case of two dimensional geometry, here also we have to show that out of the

three distances AB, BC and CA, sum of two of them should be equal to the third.

We have

AB- (5-2)2 +(5-3)* +(6-2)* =429

BC=y(-4—-5)% +(=1-5)% +(=6—6)*> =329

CA=(~4-2)% +(~1-3)% +(=6-2)% =2429

We observe that CA+AB = BC and hence conclude that the points are collinear.
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Example -3
The vertices of a triangle ABC are given by A(x,,y,.z,), B(x,,y,.z,) and C (x,,y,,z,), If D

1
and E are mid points of the sides A and A respectively, show that DE = EBC.

Solution

By the formula for internal division mid points of ﬁ and E are given by

X tx, yi+y, z;+2z, X, tx, yi+y, z;+z,
and E

> >

2 2 2
By distance - formula,

> >

2 2 2

2

1
DE=;\/(xz—x3)2+(yz—y3)2+(zz—z3) (i)
Now
BC= {(x,—x,)" +(y,—33) +(2,—2,) )
(1) and (ii) imply
1
DE—EBC.
Example 4 :

Prove that the points A (-1, 6, 6), B (-4, 9, 6), C (0, 7, 10) form the vertices of a right angled
isosceles triangle.

Solution :
By distance formula,

AB?=(—4+ 1)+ (9-6)*+ (-6 =9+9 =18
BC? = (0+4)* + (7-9)* + (10-6)*= 16 + 4 + 16 = 306,
AC? = (0+1)* + (7-6)* + (10-6)* = 1+1+16 = 18
which gives AB* + AC*= 18 + 18 =36 = BC?
Hence,

ABC is a right angled isosceles triangle.

Example 5 :
Find the ratio in which the line segment joining the points (4, 3, 2) and (1, 2, —3) is divided
by the co-ordinate planes.
Solution :
Let the given points be denoted by A (4, 3, 2) and B (1, 2, -3). If Q is the point where the line

_ _ k+4 2k+3 -3k+2
through A and B is met by the Xy - plane, then the co-ordinates of Q are ko1l kel kel )

since Q divides Ap inaratiok : 1 for some real value of k. But being a point on the xy-plane,
its z- co-ordinate is zero.
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Hence,

-3k+2

—Oork=2/3
k+1 ork=2/

- Q divides AB in a ratio 2 : 3. Similarly, the point where AB meets the xz - plane has its y-
coordinate zero. Hence, equating the y-co-ordinate to zero, we get

Zk+3 _ 4 or k=-3/2
k+1

i.e. the Xz - plane divides AB externally in a ratio 3 : 2. Equating the X - co-ordinate to zero, we get,

K+%  ork=-4
k+1

i.e. the yz - plane divides AB externally in a ratio 4 : 1.

EXERCISE - 13

1. Fill in the blanks in each of the following questions by choosing the appropriate answer from the
given ones.
(a) The distance of the point P (x,, y,, z,) from z - axis is —

onz "'yo2 > Jyoz +Zoz > J-xo2 "'Zo2 > J(x_xo )2 +Hy-, )2

(b) The length of the projection of the line segment joining (1, 3, 1) and (3, 2, 4) on 7 axis is —

[17 37 4? 5]

(¢) The image of the point (6, 3, —4) with respect to yz - plane is ——.
[(69 09 _4)9 (69 _39 4)? (_6, _39 _4)7 (_69 39 _4)]

(d) If the distance between the points (-1, —1, z) and (1, -1, 1) 1s 2 then z=——.
[1,42,2,0]

2. (a) Identify the axes on which the given points lie :
(1,0,0), (0,1,0), (0,0,1)
(b) Identify the planes containing the points !

(7,0,4), (2,-5,0), (0, ¥2,-3)

3. (a) Determine, which of the following points have the same projection on x-axis.

(2,-5.7), 2, V2 ,-3), (-2,1,1), (2, -1, 3)

(b) Find the projection of the point (7,-5,3) on :
(1) xy-plane, (i1) yz-plane, (iii) zx-plane
(iv) x-axiz, (v) y-axis, (vi) z-axis.

4.  When do you say two lines in space are skew ?
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10.
11.

12.

Do they interset ?

From the three pairs of lines given below, identify those which uniquely determine a plane:
(1) intersecting pair, (ii) parallel pair, (ii1) a pair of skew lines.

Determine the unknown coprdinates of the following points if

(1) P(a,2,-1) € yz - plane (1v) S(7.y,2) € x- axis

(1) Q (-1,y,3) € zx - plane (v) T (x, 0, z) € y- axis

(iii) R(y2 ,-3.¢) € xy - plane (vi) V(a, b,-3) € z - axis

Which axis is determined by the intersection of

(1) xy - plane and yz - plane

(1) yz - plane and zx - plane

(i11) zx - plane and xy - plane

Which axis 1s represented by a line passing through origin and normal to

(1) xy - plane, (i1) yz-plane, (ii1) zx - plane

What are the coordinates of a point which is common to all the coordinate planes.
If A, B, C are projections of P(3,4,5) on the coordinate planes, find PA, PB and PC.
(a) Find the perimeter of the triangle whose vertices are (0, 1, 2) (2, 0, 4) and (-4, -2, 7).
(b) Show that the points (a, b, ¢), (b, ¢, a) (¢, a, b) form an equilateral triangle.

(¢) Show that the points (3, -2, 4), (1, 1, 1) and (-1, 4, —1) are collinear.

(d) Show that points (0, 1, 2), (2, 5, 8), (5, 6, 6) and (3, 2, 0) form a parallelogram.

(e) Show that the line segment joining (7, -6, 1) (17, —18, —3) intersects the line segment joining
(1,4,-5),(3,-4, 11)at (2, 0, 3).

(f) Find the locus of the points which are equidistant from the points (1, 2, 3) and (3, 2, -1).

(a) Find the ratio in which the line segment through (1, 3, —1) and (2, 6, -2) is divided by zx—
plane.

(b) Find the ratio in which the lines segment through(2, 4, 5),(3, 5,-4) is divided by xy- plane.

(¢) Find the co-ordinates of the centroid of the triangle with its vertices at (a,, b, ¢,), (a,, b,, ¢,
and (a,, b, c,).

(d) IfA (1, 0,-1), B(=2,4,-2) and C (1, 5, 10) be the vertices of a triangle and the bisector of

the angle BAC, meets BC at D, then find the co-ordinates of the point D.
(e) Prove that the points P (3, 2, —4), Q(5, 4, —6) and R(9, 8, —10) are collinear. Find the ratio in
which the point Q divides the line segment PR .
[



CHAPTER - 14

Limit and Differentiation

141

The most suggestive and notable achievement of last century is the discovery of Non-
Euclidean geometry. - Hilbert

Introduction :

The concept of limit and convergence is fundamental in the study of calculus and Analysis. The
fragments of this concept are evident in the method of exhaustion formulated by ancient Greeks
and used by Archimedes (287-212 B.C.) in obtaining a formula for the area of the circular region
conceived as successive approximation of areas of inscribed polygons with increased number of
sides. But somehow this concept could not be persued. It was the genius of Bhaskarachaya (1150
AD.) who achieved a break-through in the invention of infinitesimal (anantaksudra) and
instantaneous velocity (tatkalika gati) for his astronomical calculations. Madhava (1340-1425) a
talented mathematician from Cochin refined the above concepts.

Three centuries later Fermat (1608) too dealt with the idea of rate of change and drawing of
tangents but often due to ignorance, the credit of developing these concepts goes to Newton (1642-
1727) and Leibnitz (1646-1716). In fact Newton has acknowledged and expressed his indebtedness to
Fermat to further his ideas. It was mainly Cauchy (1789-1857) and Weierstrass (1815-1897) who put
the limiting process on sound foundation.

Before discussion of the subject matter of this chapter we pose a simple problem. The problem
reads as follows :

“A tortoise and a hare start a 100 metre race from A towards a palm tree. The tortoise runs at a
uniform speed of 1 meter per minute. The hare runs 50 m. in the first minute. At the end of the
first minute observing that the tortoise is at a distance of 49 m. behind the hare runs 25 m. in the
next minute. After the lapse of 2 minutes again observing that the tortoise is at a distance of 73 m.
behind the hare runs 12.5 m. in the next minute. Thereafter the hare reduces the distance covered in
each minute to the half of the distance covered in the preceding minute with an impression that the
tortoise can never overtake her.”

We now ask the following question :
“Who reaches first at the foot of the palm tree ?

Since the tortoise runs at a uniform speed of 1 meter per minute it takes 100 minutes to reach
the foot of the palm tree.

Distance covered by the hare at the lapse of 1 minute = 50 m.

Distance covered at the lapse of 2 minutes = (50 + 25)mt. = 50 (1 + %j m.

Distance covered at the lapse of 3 minutes = (50 + 25 + 12.5) mt. =50 (l + % + 212] m.

Distance covered at the end of n minutes, where n € N
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=50(l+l+%+ + nlfljm
2 2 2
1- 1n 1
= 50 2_ | 'mt. =100 (1 - ]m
1 n
1_7
2

We have0 < 1 - 2%<1V11€N.50100 (1— 2%] <100V n € N.

Thus the hare cannot reach the foot of the palm tree.

We observe the following facts :

The distance covered by the hare after n minutes = 100 (1 - 2%) m.

So the distance covered by the hare after 1 minute, after 2 minutes, after 3 minutes,... are 100

(1 - %j m., 100 (1 - 212] m., 100 (1 - 213j m. ... respectively.

n

These numbers are obtained easily by puttingn =1, 2, 3, ... respectively in 100 (1 _ 1 j .

Here we say that the numbers 100(1 - %), 100(1 — 212) , 100(1 — 213) ey 100(1 - i),

n

form a sequence.

In this case we understand intuitively what a sequence is by keeping in view the literal meaning of a
sequence.

We see that there is a certain law of correspondence which assigns to every natural number n a

n

number 100 (1 _ 1 )

The term sequence in mathematics is an important concept. So we introduce the idea of a
sequence through the language of mathematics.

Definition :

A real Sequence is a function whose domain is the set of positive integers and range is a subset
of the set of real numbers, thatis f: N - R.

Example 1:
Letf (n) = Lvuen Then f is a sequence in R.
n

f,f@),f3), coienenn. M), are respectively called the 1st, 2nd, 3rd, ... .
nth, ... terms of the sequence f.
Heref(l)z%=1,f(2)=%,f(3)=%, ................... and so on

1
The sequence f is also represented by writing { f (1) }, that is {E} . Some authors also use the symbol

(f (n)) to represent the sequence f. A few examples of sequences are :
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Subsequence:

Let {xn} be a sequence in R. x1, X2, x3, ............... are the terms of this sequence. We can choose a

new sequence {xnk} consisting of some terms of the sequence {xn} Only where the index nx runs
through an increasing sequence of natural numbers 11 <2 <13 ................. The sequence {xnk } is

called a subsequence of the original sequence {xy}.

Example 2 :

{i} is a sequence in R.
n

{#} , {i} , {i} are some of the sub-sequences of the sequence {i}
2n — 1 2n 3n n

Limit of Sequence:

As we introduce the idea of limit let us describe a process by which we find the area of a
curvilinear figure e.g. a circular region. Imagine we have a circle of unit radius and we want to find
the area of the region bound by it.

First Approximation Second Approximation
(Fig. 11.01)

Let us inscribe a regular hexagon in the circle. We may say that the area A1 enclosed by the
hexagon is an approximation of the area A enclosed by the circle. But then we clearly see that this
leaves out a certain portion of the circle. To compensate for this we inscribe isosceles triangles inside
the region bounded by the sides of the hexagon and the circle and add the new areas to A; to get a
better approximation A2. No doubt this is a better approximation but still we are missing a part of
the area in the segments bounded by the sides of triangles and the circle. We can attempt to
compensate for this by adding new isosceles triangles inscribed in the segments left out to get a still
better approximation As, say.

We realize we can continue this process getting better and better approximations. We can now

say A1, Az, As,.......... ,An, are the first, second, third....., nth .. approximations of the area. That

is to say we now have a scheme of approximation of area A by a sequence (4,)” . But the idea of

approximate value is of little importance unless we know how far it is from the “exact” value. Let us
recall how we use approximations in our daily life. We say Bhubaneswar is about 300 Kilometres
from Sambalpur. This suggests that the distance measured is not quite equal to 300 but it is nearly
so. We could even say that it is approximately 299 kms. But if we said it is approximately 200
Kilometers then nobody would think we are talking sense. Because with every approximation there
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is associated a notion called error. So when we are talking of approximation we must tell what is the
error associated with it. But one can ask if we knew what the error was then why not the exact
value, as the difference between the exact and approximate value is what we call as error.

We agree, but it is not that we want to know what exactly is the error when we have an
approximation, but rather we would like to know what the maximum value of the error can be. We
know context decides what is the maximum tolerable error when we approximate for the exact
value. Indeed when we buy shirtlengths in a shop the owner does not mind if the measured length is
a fewer milimeters extra where as measuring distance between two cities we can afford to ignore
even a few meters. So the context tells us what is the maximum error allowed. So if the

sequence (A,i)m

., Tepresents a scheme of approximation of a value A then once the error £>0is

prescribed we should be able to say at what stage of approximation is the error less than e.
Otherwise this scheme of approximation is not of much worth. To be precise, given ¢ >0 we should

be able to find a positive integer no, depending on & of course such that |A -An0| <E.

This tells at what stage the desired accuracy is achieved or the price one has to pay to achieve
the desired accuracy. But this is not yet a good enough scheme unless it is stable. What it means is
that the value of Ancoming close to the value of A with the accuracy desired should not be a chance
event. An accuracy once achieved should remain so at subsequent stages. That is to say that given
¢ >0 we should be able to find an no such that

|A -A,,

<g forall n=no.

This is what is meant by stability of a scheme of approximation. In this case the value of Ay, stabilizes

around the value of A within the limit of accuracy prescribed. We observe that (An)f:1

whose terms can be brought as near A as we please by choosing 1 large enough. We have the

is a sequence

Definition :

We say that a sequence of real numbers (tz”)::1 converges to a real number [ if for every &> 0

there is an 70 such that |a, —l| <g Vu>n,.

Now the question arises : Can a sequence converge to two different real numbers? In other
words can the terms of a sequence be brought arbitrarily close to two different real numbers.
Answer is obviously no. We invite the reader to find a formal proof of this.

We see that if a sequence (a,)” , converges at all it has to converge to a unique real number I

o0
n=1

which we call its limit. We express this by

lim .. e e
anp=1. read : limit of a, as 1 goes to infinity is [
1 —> o0 n ( 1 g ty )
We observe that
if lim an=11 and lim by=12, then
1n—> o 1n—> o
lim

lima, + lim b,

(lln +b11) :ll +l2: .
o) 11— © n—>®

n—>

Similarly we can show that

lim b ) = lim lim

(ﬂn -by) = an - ny
11 —>» o0 11—> ® 1 —>®
lim

(ﬂn brl) = hm an llm bn ’
11 —> 0
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lima, .. lim
= »oif b 0.
My T Timo, oo™ ™

We discuss a few examples.

Example 2(a) :

Let a, = 1 . We claim that (nn)mfl conveges to 0. Now for €>0letn, = [l} + 1.
n "= €

So we have 1, > % . Hence for 1 > 11, we have 0 < %< ,% <e. Also see Example 16.

0o

Example 2(b) :

(i) conveges to 0. Indeed 2" > n. So for € > 0 choose 11, such that %< ¢ for nn > 1,.

n
n=1

Thus we have 0 < 2—1n < l< g for 11 > 1n,.
n

Example 2(c) :
Madhava (13 century A.D.) wrote
i Sttt
What he really meant was if we write
P1=1
1
p :1-_
? 3
1 1
Pi=1- —+—
3 375
1 1 1
Pi=1- =4=- =
4 37577
n—1
pp=1-1,1 1, )
3 5 7 2n-1

then the sequence (P”):: conveges to %

1

It can be shown that

1
2n+1

T

P
3

which shows the maximum error committed if we stopped summing the series at the nth stage and
what is the maximum error we are liable to commit, or to achieve the desired accuracy we should
sum the series to how many terms in the least.

Find out how far we need to sum by using the above formula if we want to achieve correct

value to the third place of decimal.
Example 2(d) :

1
Letb>1and a, = b". We claim that (an)::l converges to 1. Indeed
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anp>1. Let us write a; =1+ yu such thaty, > 0.
1
Sowehave b" =1+vy,.

We have then by Binomial Theorem

n mn—-1) - "
b=(l+yn) =1+ny,+ (2! ) N +Y,.
This gives b > 1 y,> 0.

We get
b
< —.
n

So if we choose 1, = [E} +1, we get b < i <b.E-¢ for n> 1.
g noo, b

Hence 0 < y,, <& for > n,.
In other words, we have

O<a,-1<e for n>rn,.
1
Using the last inequality of Example-2(b) show that forb>1, b" converges to 1.
Take your pocket calculator and take any number larger than 1 say 10. Take its square root by
pressing \f . Take the square root of the number obtained by pressing the key \f again. Continue
this process at least 15 times. What do you see ? Why did you see what you saw?

Hitherto we have talked of convergence of a sequence which is a function of natural numbers.
Many times we also encounter in the context of function of real numbers, the notion of limit.

Suppose a function f is defined on a deleted neighbourhood of a point x,. What we mean by that is
that f (x) is defined for all x satisfying 0 < |x - x,| <a. (i.e. for

Xo< X < Xo+ a4 OF Xo-a <X < Xo.). We observe that f(x) is defined for all values of x in the interval (x,
- a, Xo + a) except the value x = x,. Now what would happen to f (x) as x comes close to x, from

either side of x, ? Does it come close to a real number? There are many situations in which it does
not. For example for f(x) = sinl, x #0, the function f is defined for every real number except the
X

real number 0. We observe that f(x) does not come close to any value as x comes close to 0. For

example when x = 1 , flx) = 0 where as for x = 1 , flx)=1 and for x = 1
100w ( 1] ( l]
100+ =|m 100 - ==
2 2
f(x) = -1. This oscillation goes on as x goes through the values o’ T 1 T~ 1 - f(x) takes
nn (2r1+§jn (211—§)n

the values 0, 1 and -1 though x comes progressively near to 0 as 7 increases.

But there could be situations where f(x) could come close to a number [ as x comes close to xo.
sinx

for x #0 we see that

For example if we define f(x) =

X 1.0001 | .9006 8011 .7016 .6004 4014 3002 .2007 1012

sinx | .8415 | .9837 7181 .8455 .5650 .3907 .2957 .1994 1011
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fix)= sinx | .8414 | .8701 8976 29200 9414 .9702 9850 .9960 .9990
X

We see that f (1.0001) = 0.8414, £ (.9006) = 0.8701, f(.8011) = 0.8976, f (.7016) = 0.9200, f (.6004) =
0.9414, f (.4014) = 0.9702, f (.3002) = 0.9950, f (.2007) = 0.996, f (.1012) = 0.9990. Radian measure of 2054' is
.0560 (correct to 4 places) and sin 2054’ = .0560 (correct to 4 place). This seems a plausible that the value of
sinx

progressively comes close to 1 as x comes close to 0. We shall in fact demonstrate later

lim sinx
n—>ow X

that =1.

Now we study about limit of a function in greater detail.

14.2 Limit of a function (Including polynomials and rational functions)

The limit of a function is the most fundamental concept in the study of calculus as well as of
mathematical analysis. In this section we shall be concerned with the limit of a real-valued function
of a real variable. For this purpose we make a very simple beginning. Our approach to the subject
matter is based on our intuition. In the later stage we shall discuss the subject matter in logical and
rigorous way. At present we must understand what is meant by the limit of a function at a point. We
begin with a simple illustration.

Example 3 :
Consider a function f defined by f (x) = 2x + 1.

The domain of this function is the set of real numbers. 1 € domf.

It is natural to ask whether or not 2x + 1 becomes closer and closer to 3 as x becomes closer and

closer to 1 but not equal to 1.

We observe that :

f(0.9)=28 f(1.1)=32
£(0.99) =2.98 £(1.01) =3.02
£(0.999) =2.998 £(1.001) = 3.002
£(0.9999) = 2.9998 £(1.0001) = 3.0002
£(0.99999) = 2.99998 £((1.00001) = 3.00002
and so on. and so on.

We see intuitively that

(1) 2x + 1 becomes closer and closer (or nearer and nearer) to 3, as x becomes closer and closer to 1,
(2) 2x +1 can be made as close to 3 as desired by taking x sufficiently close to 1.
The above facts are expressed by writing

lim . _
1 2x+1)=3,

ie2x+1—>3 as x —> 1.
The symbol — stands for approaches or tends to.

x = 1 is read as x approaches (or tends) to 1 and x = 1.
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im_l) 1 (2x + 1) is read as limit of (2x + 1) as x approaches (or tends) to 1.
1:2 1 (2x + 1) =3 is read as limit of 2x + 1 as x tends to 1 is equal to 3.

The last statement is also expressed by saying that limit of (2x + 1) at x = 1 is equal to 3.
Example 4 :
Let a real function f be defined by

- 4
f(x)y=———=, xeR x=2
x =2
Clearly the domain of this functionis R —{2}.
This function is undefined at x = 2.

But in this case we raise the question :
¥ - 4
“Does ——— approach a definite real number asx - 27 “

When x — 2, there are two types of influences acting on f. The numerator approaches zero. The

denominator also approaches zero by pushing the function to take large values. How these two

opposing influences balance out ?

Sincex-2=0,

2 . .
-4 (+Dx-2)
o =2) =x+2

So the behaviour of the function f near 2 but not equal to 2 is the same as the behaviour

of (x + 2)near 2 but not equal 2.

2
lim y_olim x -4 _ lim . _
x—>2f(l)_x—>2 -2  x—=2 (xr+2)=4

In this case 2 ¢ dom f, but there are points in the domain that are arbitrarily close to 2. Intuitively we

lim

see that
x—o2

f(x)is equal to 4.

In view of the preceding facts it is desirable to study the concept of limit in such a way that the limit

of a function at a point, if it exists, can be established mathematically in a precise and logical

manner.
The idea of closeness or nearness plays an important role in the discussion.

By writing x — a, we mean that x is arbitrarily close toa and x = a.

We understand this only through our intuition. Mathematically we can not decide whether a

point x # a is close to a or not. This is because of the fact that there are infinitely many real numbers

between x and a4, and there is no objective standard which determines whether a point x is close to

a or not.
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Since mathematics is a language that gives clarity and precision to an expression with
perfection, mathematically the expression

"

x is arbitrarily close toa ”

is not meaningful as yet. But if we say that “a point x is at a distance less than 6 (5 > 0) from the
point a, then mathematically our expression is meaningful. So the set of all x # a such that x is at a
distance less than any fixed 8 > 0 from a serves the purpose of conveying the meaning of the

expression
“x is arbitrarily close toa and x#a “.

From the preceding discussion we conclude that perhaps the best way of exhibiting the idea of

closeness is through neighbourhoods.

Ifa € R, then any open interval containing the point a is called a neighbourhood of the

point a.
The open interval (a —8, a + 8) is called the —neighbourhood of the point @ where 8 > 0.
(i) Theset(@—-9,a+d)={xeR|a-0<x<a+d}

={xeR | |x-a]| <8}
(i) @-8a+d)—{a}={xeR|a-8<x<a+dandx=a}
={xeR|0<|x-a| <8}
(iii) (@-98,a)={xeR |a-d<x<a}l.
(iv) (m,a+8) ={xeR|a<x<a+3d}

The above discussion enables us to convey the concept of limit through the following definition.

Definition :

Note

lim

A number [ is called the limit of a function f as x tends to a or simply T

f (x)=lifforany
> 0 there exists & > 0 depending on € such that

O<|x-a|<é= |f(x)-1]|<¢e
iea-d<x<a+dandxza=l-e<f (x)<l+e.
: The choice of the number e is arbitrary, but as small as one wishes. The number / = ili .
f (x) has nothing to do with the value of f at the point x = a itself. Moreover the function f may not
even be defined at x = 4, i.e. the point @ may or may not belong to the domain of f, but what is

essential is that the function be defined in some deleted neighbourhood of the point a.

The number ! provides some information on the behaviour of the function in a deleted
neighbourhood of the point a. It conveys that when x assumes values different from a and

approaches a according to an arbitrary law, f (x) becomes arbitrarily close to I.
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If there exists § > 0 such that a function f is not defined on (2 - 8, a2 + &) — { a }, then the question

of limit of the function as x — a does not arise.
We illustrate the preceding definition by some examples below.
Example 5:
i
Solution:
Let € be any positive number.
We take f (x) =x
Then | f(x)—a | <eif |x-a | <e.
Taking & = € we see that there exists & > 0 depending on € such that
|x-a|<8= |fx)-a]|<e
Sol0<|x-a|<d= |f(x)-a|<e.

Hence 1M f(x)=a,

X—a
je M oy
X—a
Example 6:

Show that 1im (2x +1)=3.
x—=>1

Solution :

Let € be any positive number. Then | 2x+1)-3 | <€if2 | x-1]| <€,

ieif [x-1]< <.
2

Weset6=§.Thusthereexist36>0dependingonesuchthat |[x-1]| <6= |(x+1)-3| <e.

lim ’ _
So 1 (2x+1)=3.

Example 7 :

Jx =2

Prove that lim
x—4

Solution :
For the evaluation of this limit we must keep x within the domain of definition of \/; .
The domain of \/)T is the set of non-negative real numbers.

Since the distance between the point x = 0 and the point x = 4 is 4 we restrict x within 4 units of the

point x =4. Then 0 <x < 8.
This implies that -4 <x -4 <4
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= |x-4| <4

Given € > 0 we seek for 8 > 0 depending on € such that
O<|x-4|<8=> | Vx -2|<e

Since | x -4 | <4 we must take 0 <6 < 4. We have

(-2 (o ez oo

|Vx -2 = : .
J,x_-+2 | Ax o+ 2
f 1
Since vJx +2=2, %25
Nx o+ 2
-4
So| V¥ -2 i B
Jxo+2 2

In order to have | Jx -2 | < € we choose % <eg,le d<2e.

But 0 <8 < 4. So if we take 6 = min (4, 2€), then
| x—4 | <d= | \/_‘—2|<e.

Thus given € > 0 there exists 8 > 0 depending on € such that
|V 4] <8= | Jx -2 | <e.

1 f
Hence l}m Nx =2,

—4

| EXERCISE 14 (a) |I

Use intuition and then -6 technique to obtain the following limits.

LoDy e 6. im0
>y e 7 lm 2

5 10y () g lm  due2
NS 9. lm x|

5 o 7 0. M) (v ]4+3)

Note: In the above exercises, you have been asked to compute the limit by determining & whenever € is
given. But this is not always easy. In such cases it is advisable to use certain theorems to determine

the limits.
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Laws of limits :

The following theorem is useful for evaluation of limits. Different parts of this theorem can be

proved by using the e - § definition of the limit.
Theorem 1:

- li li
If the functions f and g are such that ;g 4 f (x)=1and ;2 .8 (x) = m, then

M M of@rg@i=m o fme M e =iem,

i.e. the limit of a sum is equal to the sum of the limits.

@ Mmoo w-gwi=im - ew=tom,

i.e. the limit of a difference is equal to the difference of the limits.
oy lim N1 _1 lim N
i) B gk =k lim o f < p
if k is a constant.

@) Im fmg@r=m f e moe ) =m,

i.e. the limit of a product is equal to the product of the limits.

. : li X
(v) m L x.lg’}f( ) _ L provided m # 0,
x—=a | g(x) Lgrﬂ}g(x) m
ie. the limit of a quotient is equal to the quotient of the limits when the limit of the
denominator is nonzero.
Proof of (i)

Let € be any positive numbers.

Since ilﬂ . f (x) =1, there exists 81 > 0 depending on e such that

O0<|x-a|<d = |f(x)-l|<§.

Similarly since ilri .8 (x) = m, there exists &; > 0 depending on € such

O<|x-a|<d = |gH)-m]| <§4

Soif 8 =min (81, 82), then | {f (x) + g (x) } = (I +m) |
= f@-T+g®)-m|
<[ f@=l+]g®)-m|

< E+E=Ef0r0<|x—:z|<8.
2 2
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lim . N _ lim N, lim ;
Thus a [fW+g®)}=l+m= x—)nf (x) + o g(x).

The proof of (i) is complete. Other parts are left as exercises.

Example 8 :

. lim ) o, 1

@ m (\/1_+JL + J;T—j
- lim \/JL_ + lim (x) + lim 1 by theorem 1 (i)

x—1 ( ) x—1 x—=>1 [y y

=1+1+1=3.

(i) 1321 17x y=17 B{‘)l Jx =17, by theorem 1 (i)

(iif) E{‘)O (2x+1) (Vx +5)
= iHiO 2x+1) ?20 («/;+5) by theorem 1 (iv)
=1.5=5.

2x + 1

. ’ ) lim(x + Vx
221 (’“Jr‘/;} _ x»l( ) _1+1 _ 2 by theorem 1 (v)

(iv) ; =
lim (2x + 1) 2+1 3
x—1

14.3 Left hand and right hand limit of a function.

From the definition for the limit of a function f at a point 2 we observe that if for any € > 0
there exists 8 > 0 depending on € suchthata -8 <x<a+8andx#a= I-e< f (x) <l + €, then

lim N
x—»af(l)_L

a-98 <x < a + dand x #a means

a-8d < x <aora<x<a+ad
Soif (i) a-d<x<a=1-e<f(x)<l+e
and (i) a<x<a+d = l-e<f (¥)<l+e¢

lim g =
then T f =L

Proceeding from the previous discussions we introduce the notion of left-hand and right-hand
limits of a function fatx =a.

The symbol ilri i f (x) stands for the left-hand limit of f (x) at x = a. [t means the value to
-

which f (x) approaches as x approaches a through the values of x less than 4, i.e. from the left- hand
side of a.

Similarly the symbol ilr: - f (x) stands for the right-hand limit of f (x) at x = 4. It means the

value to which f (x) approaches as x approaches a through the values of x greater than a, i.e. from the
right-hand side of a.

Definition :
lim

A number [; is called the left-hand limit of f (x) at x = a or simply Y

_f () =hifforany € >0

there exists 8 > 0 depending on € such that



Limit and Differentiation 349

a-d<x<a = |f (\)-h]| <e.

Definition :

A number I is called the right-hand limit of f (x) at x =a or simply im_l) ot f(x) =hifforany e

> 0 there exists & > 0 depending on € such that
a<x<a+d = |f(x)-L|<e.

Using the last two definitions and the definition of the limit of f (x) at x = a it is easy to see that
(1) ifh=h=l,

. lim 5 lim N
ie. x—)u—f (x) = x—>:1+f(l)_l’ then

lim N o .
Y —>a f (x) exists and is equal to ],

., lim 3 =
ie. x_mf (x) =1

lim . ;
(2) Iflh# D, then T f (x) does not exist.

(3) Fora functionf to have alimit ata point a € R it is necessary and sufficient that both hri .

f

(x) and ilri - f(x) exist, and these limits coincide.

Example 9 :

. lim .
Examine 0 Sgn x.

Solution :
- 1ifx <0
WehaveSgnx=< 0if x = 0
1ifx >0
From the definition it follows that
lim . lim ST
x—)O—SgHJL - x—)O—( h=-1

lim ~_lim _
and x_)0+5gnx 1=1

- xr—=>0+
since hri 0— Sgn x # ilri 0+ Sgn x, ini 0 Sgn x does not exist.
Example 10 :

Prove that l%m [ x ] does not exist for any 1 € Z.
X—n

Solution :

lim S T
x—)n—[l]_” 1

lim
x—n+

and [x]=n

Since n—1=#nforanyneZ,
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x]foranyneZ
X—n— X—on+

So lim [ x ] does not exist for any 7 € Z.
X—n
14.4 Infinite limits and limits at infinity.

The special symbols o« and - 0, called infinity and minus infinity respectively are used to deal
with problems in mathematics under special situations. It should be borne in mind that « and -«
are not real numbers. We illustrate below the concepts of = and - by means of an example.

Let us consider the function f defined by f (x) = 1 ,xisreal, x=0.
X

Here f (0) is undefined.

But intuitively we observe that when x—0 +, i.e. x approaches 0 through positive values, 1
X

becomes indefinitely larger and larger. In fact the value of f (x) can be made larger than any positive
number by taking positive values of x sufficiently close to zero.

Under this situation we write

lim 1 _
x—=>0+ y ’

Similarly by applying our intuition we see that when x—0-, i.e. x approaches 0 through
negative values, ~ decreases indefinitely through negative values. In this case the value of f (x) can
be made smaller than any negative number by choosing negative values of x sufficiently close to 0.

This situation is described by writing

lim  f) ==,

x—0
Note that the notation BH_I)O +f (x) = « does not mean that hm 04+ f (x) exists.

lim 1

Similarly the notation 0 f(x) = — o does not mean that 0 f(x) exists.

We are led to the following definition.
Definition :

lim f(x) = o if given G > 0, there exists 6§ >0 depending on GsuchthatO0< | x-a | <6=

X—>a
f x)>G
Definition :
ilﬂ . f(x) = - ifgiven G > 0, thereexists 8> 0 depending on GsuchthatO< | x-a | <6=
fx)<-G.

Note that in the preceding definitions we can choose G as large as we please.

Example 11 :
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lim 1 _
x—>0- Y+ 1)

lim 1

. ———— = and
20+ x(x + 1)

Show that

Solution :
Let G be any positive number, however large.

Then given G > 0, there exists 3 > 0 depending on G such that

if0<x<x 1+x)< i,then
G x(1+x)

We take & = i
G

Thus given G > 0, there exists 8 > 0 depending on G such that

O<x<d= 1
x(1+x)

S lim 1 _
o —_ =
r—=>0+ x(1+x)

Again for large G, - é <x<0implies0 <x+1<1. So

-1 <x< (x+1)x<050that¥ <-
G x(x+1)
Hence 1M L -

r=0- x(x +1) -

Example 12 :
Show that lim Lz = o0.
x—=>0 4
Solution :

Let G be any positive number, however large.

Theni2 >Gifa? < i,x;ﬁO,
x G
<x<i x=0,

1
VG VG’

le. if—

ie if0<|x|<—.
VG
N 1
We take d = — .
VG

Thus given G > 0, there exists & > 0 depending on G such that

0<|x|<8:>i2>G.
x
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go lim 1

=0
. 2 -
x—>0 o

Definition :

ilg wf (x) =1 if given € >0, there

exists G > 0 depending on € such that
x>G= |fx)-I]|<e.
Definition :

}:ﬂ _OO f(x) =1if given € > 0, there
exists G >0 depending on € such that
x<-G = | f(x)-1] <e.
Definition :

-t g0,

exists k > 0 such that
x>k = f (x) >G

The concepts inioo f(x)=—owand ilg o f (x) = o0 can be defined similarly.

Examples 13 :

Show that im 1 _¢.
X—>0 y
Solution :
We choose € > 0.
1
Then l—0 | L =l<eifx>—. (~x>0)
X X X €
1
WetakerE.

Thus given € > 0, there exists G > 0 depending on € such that
x>G = |i—0|<e
x
1
So — —0 as x—oo,
x

je lim 1 _4
X—>®

Note: If x increases indefinitely through positive values, 1 remains positive and decreases indefinitely.
X

So intuitively we see that 1 —0 as x —o0.
X
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Remark :

lim
If x—)oof(

x) =l and l%m g (x) = m, then all the conclusions of Theorem-I hold if a is replaced by
X—> 0

co. Similar is the case if a is replaced by — oo

Example 14 :
) 2 -
Evaluate l}m M
X0 2x" —3x+5
Solution :
lim 3+ 4x—1
X—>® 2% _ 3y +5
sed o1
_ lim x x
X—>®© 3 5
2- =+ 5
X X
lim
(.41
_ X—>0 X X
lim
b3
X —>00 X X
lim 3 + limé_— limi2
_ x> x—oo ¥ x—swo X
lim 2 - limi_ + limi2
xow  xowt xoe
_3+0-0_3
2-0+40 2

We state below the following theorems without proof. These theorems are useful for solving
some problems on limits.

Theorem 2 :

(i) Ifa function f satisfies the inequality f(x) >M > 0 in a neighbourhood of # and a function g is

SuCh that hm g (x) = 0’ g (}C) = (0 for X#£a and g (x) > 0, then ]_]_m f(x) —
x—a ¥>a g ()
(i) If f(x) >M >0 in a neighbourhood of the point ¢ andif ¢ is such that ili .8 (x)=0,g

lim f&¥) _

(x)= 0 for x #a and g (x) <0, then Y= g () -

Theorem 3 :
(Sandwich theorem or squeezing theorem)
lim N lim N — : ; : . : L
If o f)= oal (x) =1 and a function ¢ is such that f (x) < ¢ (x) < ¢ (x) for all x in a deleted
neighbourhood of a, then ilr: L0 @=L
Example 15:

Find the limit as x — 0 of the following function on R :



354 Elements of Mathematics (Vol.-I)

(%) = { xsin%(x = 0)
0 (x =0).

Solution :
Since | sin 1 < 1, it follow that
X
o1
0< ¢ () |=]xsin—| < |x].
X

: N Ny lim N lm N =
Withf(x)=0,g (x) = | x | we have x_)of(x)—O, l__)Og(Ju)—O

and so by squeezing theorem ilri 0 ¢ (x)=0.

14.5 Further results on limits and their applications
Convergence of a sequence:
Definition:
A number / is called the limit of a sequence { xx } if given € > 0, there exists m € N such that
| xn—1| < e forn>m.
lim

If 1 is the limit of a sequence { ¥ }, then we write Xn=1L
m.

Definition:

A sequence { xy, } is said to be convergent if lim Xn exists; otherwise it is called divergent.
o0

If lim

N xn = [, then we say that the sequence { xn } converges to /.
n cO

Example 16 :

Prove that the sequence {i} is convergent.
n

Solution :

Lete >0.

Thenl <e'1f11>l
n e

1
We can choose m € N such thatn>m > —.
€

Thus there exists m € N such that

1 -0 :i<ef0rn>m.

1 n

So the sequence {l} converges to 0;
n
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je im 1 _q
n—w ,

Examples 17 :
Prove that the sequence { n? } is divergent.
Solution :
Let G be any +ve number, however large.
Thenn> VG = n2>G.
We can find m € N such that

n>mz2 \E

Son>m = n2>G.
lim 2 _

Hence n% = 0.
n—>

Thus the sequence { n? } is divergent.
Theorem 4 : (Without proof)

A sequence { xn } converges to [ if and only if every sub-sequence of { x,} converges to [.
Example 18 :

The sequence {(— 1)”} is divergent.
Solution :

Write xp = (- 1)

Thenx1=-1, x2=1, x3==-1, x2=1, ........c.oooiil.

e xk=(-1)%=1xx+1=(-1)%K+1=-1,

Then the value of xn is 1 if 7 is even, — 1 if 1 is odd. In other words this sequence oscillates. We may

see that
Iim . _ lim _
koo T 151
}clgw X2k +1= }(1200 -D=-1

So by Theorem 4, the sequence is divergent.
Now we show how limit of a function can be decided through limit of a sequence.

Theorem 5: (Without Proof)

lim ~ lim N
x—)tzf(l)_l < n—)oof(ln)_l

for every real sequence { xn | with xn 2 a

for any n € N and lim Xn =d.
n—>w
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N.B. (This result will be proved in higher classes. It has wide applications. The next example is an

illustration)

Example 19:

Prove that ilm sin-L does not exist.

-0 x
Solution :

Letf(x) =sin -, x=0.
X

Let { xn } be a sequence defined by

2

xp=—""——VnelN.
2n + O)m

clearly xn # 0 for any 7 € N and

Iim lim 2

n—0 """ now @n + Dn -

We have f (xn) = sin L
X

n

sin(Qn+1) &~
@n+1) 2

DrVvneN.
{f (xn) } is a sequence in R.
Consider the subsequences { f (x2n) } and { f (x2n-1) } of the sequence { f (xn) }.

lim . _lim o qvon-1_ Iim gy
11—>oof(kzn_1)_n—>oo( b= _n—>oo( h=-1

lim oy lim _qyn_ lim
rz—)oof(lzn)_ n—w =D 11—> 0

. lim . lim Ly lim . .
Since n_)oof (x2n-1) = N OOf (x2n), s OOf (xn) does not exist, by Theorem 4.

So by Theorem 5, ilm sin L does not exist.

—0 x
| EXERCISE 14 (b) |

1. Using the € — 8 definition prove that

-~ lim . _ .y lim 1y —
(i) x_)0(21+3)—3 (ii) x—)l(% 1)=1
2o lim . _ . Iim .2 Q)
(iii) JC_)_2(3)L+8)—2 (iv) x—>3(l +2x-8)=7
lim oo o lim o
(v) x—>9\/; =3 (vi) x—m\r =Va,a>0.
(vii) IM |3y 42 =5 (viiiy) 0m | 5y-7 | =3

x—1 x—2
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T T
f ;Iiﬂf(x) = [, then prove that ;Iilnz [ fx) | =1]1].

Is the converse true ? Justify your answer with reasons.

(i) Prove that hm . _
X—>a

(ii) Using (i) and the laws of limits prove that
lim

—a A" =g where 11 is an integer.
(> ¢

(iii) Using (ii) and the laws of limits prove that

n n

Im Xx —-a

= == = a1 where 1 is an integer.
X—a X —a

(iv) Using (iii), the laws of limits and assuming that
. 1 1
lim XM o= gm
x—=a
where 1 is a non-zero integer prove that for any rational number 7,

n n

i ¢ —a
im X —a _ nat =1,
X—da X —a

Evaluate the following :

(i) fﬂ (U420 =332 4 403~ 5

(ii) i‘iio(3x2+4x—l)(14+2x3—3x2+5x+2}

2
... lim X +3x -9
(iii) r—>2 11

2
. lim x -9
(iv) x—=3 x_3

(V) lim -\-3 -1

x—=>1 421

» lim x -2
) ¥52 x-16
(vify lim % -8

X220 3

lim 2 +2x—15

(viii) >3 7y ¢
3
.. lim (B +x)y -27
() x—0 X
11
(X) lim }Cz 4

x—2 x =2
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y=>1(x-1 [(x+3 3x + 5
o lim (4 )t =0
(i) h—0 I
4 4
o lim (x+ ) —x
(xiii) h—0 A
(xiv) lim 2" -1 where m, n are integers.
x—>1, 17 !
2
im X —2x+1
XV L
(xv) x—1 X —x
2
.~ lim X +x -2
AR P
5. Evaluate the following :
+ lim 2x + 1 .y lim 3 +x -1
@ iy lm Srxod
3x — 2 X—>® 2x" — 7x +5
...y lim 2+ 22 +3 . lim By 42
(iii) - R R (iv) - Ty
X2 x* _3x" +1 X2 x7 _3x+1
. 3 2 .
(v) lim ( - j (vi lim
X\ 2x" — 1 2x +1 n—®w n 41
. 2 . _
(vii) lim 112 +n+1 (vii) lim (\/; lj
N—>90 5% 4+ 211 + 1 n—o\ .y 41
(ix) Hm ( 6n” + 21 + 1 J o Im 1H+24+3+ +n
>0\ 4wt 2307 + 20"+ + 1 1—>0 "
. 2 2 2 . 3 3 3
(xi) im 1 +2° +3 +......... + 1 (xii) im 1 +2 +3 + ... + 1
n—-w n n—0 n
1 1
oo Lim 1+ 5 + 2—2 + ... + N . fim |l
(xiii) I I I (xiv)
A T + — 20+ 1) -|n
3 3 3"
6. Examine the existence of the following limits.
o lim . - lim .
(1) v >3 [x] (i Tolxl
oo lim ) .y lim x|
SAPENETE W) x50
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lim
lim x -2 . |2x = 1|
v == vi) 1
()x—>2|x—2| ()1*5 2y -1
(vii) x_)1[231+3] (viii) JC—)OO—[x]
. v Lim X - x lim |x2—3x+1|
() lm XX (o lim LY
X—=® [x" — x| x= xT—3x+2
: lim _ [x] s lim .
(xi) x—)oo( 1) (xii) Y o0 S
(xiii) im0y (xiv) lim o1
X x—0 x

(xv) lim g1
x—>0

T . 2x -1, x<1
o) B Feitfey = | 3L 1 VST

7

0, x 0
sy lim . lim N N A .
(xvii) x—)Of(l) and X_)lf(l)lff(x)— 1 2_L., (}_ <x =1
3—4x, x > 1.

1if x isrational
7. Letf(x) = { 0 if x is irrational.

Then show that Llri f(x) does not exist for any a € R.
a

14.6 Limits of trigonometric functions

We need the following inequality for the study of limits of sine and cosine functions. We state below

this inequality in the form of a theorem.
Theorem 6:
Forany0 e R, | sin6 | < |6].
Proof:
For0=0, |sin0| = |0] is quite trivial.
Let the arc AB of a circle with

centre at O and radius r be bisected at Y

the point C by the x-axis.
Let the radian measure of ZCOB = 6, r

where 0 <6 < %

\
Clearly x-axis is the perpendicular (0] N y D
A

PN

bisector of the chord AB. r

Since the length of a chord
subtending a circular arc is less than the
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length of the arc, the length of the
chord AB is less than the length of the
arc AB.

So half the length of chord AB is less that half the length of the arc AB,
ie rsinf <rb

sinf

or, <1.

Since sind

is an even function of 0 this inequality holds not only for the positive values of 0 but

K

also for negative values of 0 satisfying the inequalities 0 < |0 < 5

For0< |6] <% thatis—% <9<% and 0 = 0,

sind > 0.
0

So | sin | _ |sin€)| _ sin® <1
o] el o

This gives | sinf | < |8].

Let 0] = =
2

Since the maximum value of |sinf| ¥V 0 € Ris 1 and1 < T we must have |sinf| < |0].

Thus |sin®| < |0] YO eR.
Theorem 7 :
lim  sinO

0—->0 o =L

Proof :

We refer to the figure given for the proof of the last theorem, where 0 < 0 < g In that figure AD and BD

are tangents to the arc ACB at A and B respectively. Since half the length of the chord subtending a
circular arc is less then half the length of the arc and half the length of the arc is less than BD (=AD) we
must have

NB < length of arc CB < BD,

ie. rsind <0 <r tand ( m ZOBD = %]

or, sinf <0 < tan6

or, 1< .9 < 1 (*.'sinb > 0)
sinf cosB
or, cosh < sind <1.

Since cosH is a continuous function of 8 (see the next example),



Limit and Differentiation 361

lim

00 +C086 =cos0 =1.

[Note : We use the property of a function which will be proved while discussing continuity in
Vol-II next year. However you can convince yourself of this property of a continuous function that its
graph does not have any gaps/breaks. So cos6 , when 0 — 0-, shall approach cos0 which is equal to 1. In
general, a continuous function, in the limit, approaches its functional value.]

lim sinf -1
0->0+ 9

So by sandwich theorem
Let- L <0 <0.
2

Ifwetakeez—(p,then0<(p<gand(p—>0+ase—>0—4

lim sin@ _ lim sin (—¢)  lim —sing _ lim sing
50 650 =00 “ 00 =90 =1
—0- ¢ p—>0+ g p>0+ _ g 90+ o

Thus lim sind _ lim sinf -1

6-50- o ~ 00+ o

lim sin®
S0 0—0

exists and is equal to 1,

. lim sin® _
i.e. 00 o =1

14.7 Limit of Exponential and Logarithmic functions
For this purpose we develop the concept of
Monotonic Sequences.

Definition :

Let {xn} be a real sequence.

The sequence {xn} is said to be monotonic increasing or non-decreasing if xn < xn+1V 1 e N.

If xn < xn+1 V 1 € N, then the sequence is strictly increasing.

If xn 2 ¥n +1 ¥ n € N, then the sequence is monotonic decreasing.

If xn > xn+1 V 11 € N, then the sequence is strictly decreasing.
Bounded Sequence

A real sequence {xn} is said to be bounded above if there exists a real number M such that

Xn £ MV 1 € N. The number M is called an upper bound of the sequence.

If there exists a real number m such that x5 > m V n € N, then m is called a lower bound of the

sequence.

If there exists a real number K > 0 such that |x,| < KV n € N, then the sequence { x;, } is said to be
bounded.

A sequence { xy, } is bounded iff it is bounded below and bounded above,
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We need the following theorems for our purpose. The proofs of these theorems appear in higher
mathematics.

Theorem 8:

(a) A monotonic increasing sequence { xn } bounded above is convergent, i.e. xn tends to a limit as
11—>00.

(b) Monotonic decreasing sequence { xn } bounded below is convergent, i.e. xn tends to a limit as
11—>0,

With the preceding information in our hand we discuss below the lim [1 + —) , Where 1

n—> 0 "
e N.
Example 20
Consider convergence of x, = (1 + l) vV 1 e N.
n
Using binomial expansion, we have
n nn-1
an[l-i-i) =1+n.l+i—l.i2+ ............. + 1
n n |l n 1"

=1+1+—(l——J+—(l——J (1—£j+ ........ to (n + 1) terms.

1+1 ! ! +1
< 1T+1+— +— + ... P
2 [«
<1+1+i+i+ ................. +L
2 22 271—1
-1
=1+ 21
l_i
2

=1+2(1— 2%) <1+2=3 VneN,

So the sequence { iy, } is bounded above.

1 1
Furtherxn=1+l+—(l - i) +—(1 - i) (1 - 2) o (n + 1) terms
|£ 1 |i 1 1
1 1 1 1 2
< 1+1+ 1- —F + 1- 1- + ....to (n + 2) terms
|£ n+1 B - n+1 n+1

=xnse1 V12 e N

Thus the sequence { xn } is an increasing sequence bounded above.
So xn tends to a limit as #—oc. This limit is denoted by the symbol e.

. . 1 n
0 lim Xn = lim (1 + —] =e
1n— o0 1n— o0 n



| Limit and Differentiation 363

n 1
(1+lj =1+l+—(1—l)+ ............... lo(n+1)terms>2Vnz2.
n |£ n

Thus2<(1 + i) <3 VnelN.
n

So 2 < lm (1 + l) <3,
11— 0 n

le.2<e<3.
Note : ¢ is an irrational number and equals 2.71818284 ... e is used as base of natural logarithm.

Example 21

Prove that lim (1 + ij =e.
X—> x

Solution :
Since x — o, we may assume that x > 1.

So there exists a +ve integer 12 such thatn < x <n+ 1.

This implies that 1,1, 1
n X n +1
Hence1+l21+l>1+ 1 .
n X n+1

n+1 x n
So(1+lj >(1+l]>(1+ L )
n X n+1
X —>0 & N—oo.

lim VY lim 1 1Y)
n—)oo(l-'-;j _rz—>oo{[1+j(l+_J }

n n

_ lim (1+ 1)‘lim (1+ 1)
n—>o n n—owol\ H

=le. =ce.

n—>w0 > on i
n+1 1
n+1
1 m
I (1 + —
m
- f:fnl}cx) 1 ;Where m=1n +1
1 =

Lim "
oo
m—»o0 m

Lim 1 ]
(-3
m—> o m

So using the sandwich theorem in the last inequalities we get

lim (1 + lj =e.
X—>w x
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-y

. lim 1\" _ lim _ 1

Corollary 1: Y [1 + ?) =y (1 yJ
=hm ( Y Ju

y—)co y_ 1

lim

r—0 (1 +X)x =e.

Corollary 2:

Proof :

v
lim L _ lim 1 1
o0+ (1+x) = Y= o0 (1 + ;} , where y = ,

=e.

lim L _ lim 1 4 1
Yo 0— (1 +x)> = o> 0 (1 + r;] , where y = .

=e.
lim

So (1 +x)x =e.
x—0

| =

Example 22

Prove that l%m log, (1 + 1) = L (a > 0).
x—0 X Ina
Proof :

1

lim log A +%)  _lim o, 1 4

x—0 X x—0

lim L
=logg{ (1+x)x}
x—0

[ Logarithmic function is ‘continuous’ on its domain: refer to the note attached to theorem -7, i.e.

proof o 050 g
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= logge
_ 1
log.a
-1
Ina
li n(l+x ..
Corollary : ;20 % =1 (" lne=1)
Example 23
lim o -1
Prove that ™M % =2 _lng (2> 0)
x=0 x
Proof :
Leta®t-1= y
Then y - 0asx— 0.
:zx—lzy = :zx=l+y
= x=loga(1+y)
So lim a -1 _ lim y
x—=>0  x y=0 Jog, (1 +y)
_ lim 1
~ Y20 log, (1 +y)
v
_ 1 _
= 1 =Ina.
Ina
X
Cor, Im £ = ! =1
T x>0 x ’
Example 24
Prove that lim x —a _ «a®!, Yo € R (x>0,a>0)
X—>a x-—a
Proof :
Leta=0.

Letx=a (1+y).
Then y—0 as x — a.

oo lim 2" —a" _ a lim (1 +y)° -1

=a
X—=>a x —g y—>0 Y
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_goilim [ In(1+y) (Q+y)° -1
y—=>0 y In(1+y)
_gelim @4y dim Ay’ -1
y—>0° y 20 @ +y)
=g%-1 lim (l+y)a -1
Y20 In@ +y)
o
= %1 lim eln(lﬂ[) -1
y=0 (1 +y)
ol lim ea]_n(1+y) 1
1 T y»0T In(l+y)
i e“t 1
— ,9%-1 11ImMm 2 — —
I R where t =1n (1 +y)
=oa*-1
If « = 0, the result is trivial as x* =4 = 0.
Example 25
Find Hm M
¥—=>0 sin3x
Solution :
(sin2xj
lim sin2x  _ lim 2x
x—0 gin3x x—0 3(51'113}6]
3x
('sianj
_ 2 lim - 2x
3 x—>0 (Sinﬁ‘h‘j
3x
i sin2x
_ 2 3b  2x 2 N 1_2
3 lim sin3x 3 1 3’
x—0 3x
Example 26
Evaluate 1M 1 - cosx
x—0 %>
Solution :

1 — cos’x
X’ (1 + cosx)

lim 1 — cosx
x—>0 52




Limit and Differentiation

367

_ lim SjIlzx
x>0 42 (1 + cosx)
_ lim (sinsz lim 1
x—>0 x x—=>0 1 + cosx
=1x 1_ l
2 2
Example 27
Prove that 1m  5€€ (x +7) —seex _ secx tany.
h—0 I
Solution :
1 1
lim sec(x +h) —secx  ljm  cos(x + 1) COsX
h—0 2 T h—0 h
_ lim  cosx — cos(x + )
=0 heosx cos(x + )
2sin (1‘ + ]—1j sjni—I
_ lim 2 2
h—=0 " 1 cosx cos(x + h)
. h
lim . h lim mE
N e ['\ * EJ N h
2
= sinx x 1 x ;— = secx tanux.
cos’x
Example 28
Find M ysin L.
Solution :
lim i L _ lim Sm}/ _ 1
vooo VSIS 0y —y , where y = ;
=1.
Example 29
3x x
Evaluate l}m ¢ - ¢
x—0 X
Solution :
lim f‘axi—f‘x _ lim e (?Zx -1
x—0 X x—0 x
= lim ex lim h
x—=0 " x—=0 2y

2x1x1=2.

1

" cosx cos(x + h)
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Example 30
Evaluate l%rn log, 3x - 5)
x—>2 r =2
Solution :
lim log.(3x -5 _lim log. (1 +3y) L
e — = y>0 y , wherey=x-2.
_glim  log. (1 +3y)
y—)O 3y
I 5
im "
=3, 5 log (1+3y)”
1
=3 loge { ylgrb (1 +3y)” ]
=3 logee
=3.
Example 31
Evaluate l%m 7\"2 = V2
x—>2 3t _ 16
Solution :
G -2
lim \F - \E _ lim x =2
¥=>2 16 22 4t _ 16
x =2
1 1 1 1
x2 —22 m vi — 22
_ lim x—-2 _ x92 x-2
x—>2 4 _ ot 4 _ o4
i 2 lim 2
x -2 x—>2 v — 2
1
11
1 x 22
_ 2
4 x 2*!
_ 1
64 72
" EXERCISE 14 (c) lI
1. Evaluate the following limits :
1 _— 11 I
@ x—=0 sn2x (i) x—>0 sin 5y
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..y lim sin mx
iii
(it x>0 sinnx
lim 1 — cosx
) x—0 X2
(viiy lim  sinx
X—>T T — X
(ix) lim 1- cos’x
¥—>0  xsin2x
. lim tan x — sinx
() x—0 P
lim .
(xiii) ro (5 - x) tanx
2
lim X — XCos2x
XV -
ocv) x—0 sin®2x
v lim 2sinx — sin2x
(xvii) =0 o
(xix) lim sin ' x
x—0 x
lim  xsina — asiny

2. Evaluate (i)

X—>ao X -0
3. Evaluate the following limits :
Q) lim  sin (x + /) — sinx
h—0 h
ey lim  tan(x + h) — tanx
(iif) h—0 I
lim  sec(x + /1) — secx
v) h—0 I
v lim Vx +h - \/;
(vii) h—0 ]
1
.y lim In(x+h) -Inx
(D() h—0 h
(XI) lim E‘X +h _ E‘X
h—0 h
... lim sin (x +7) —sin(x — 1)
(i) h—0 I

4. Evaluate the following :

369
. lim tan ax
(iv) x—0 X
x—>0 5
i giny
(viii) xS 7
2 (R - .\'j
2
) im 1 + sinx — cosx
x—=0 1 - sinx — cosx
.« m 1 - cosx)2
xii — 3 .3
(xii) x>0 tan’x - sin’x
lim . -
(xiv) LOSx — SInx
X—>Z cos2x
(xvi) lim V1 +siny — /1 — sinx
x—0 tanx
(xviii) Lm ~ COSY = COS5X
x—>0 cos2x — cos6x
oy Iim Lo 1
(i) o vsin
. lim  cos(x + ) — cosx
(i) h—0 h
. lim  cosec(x + h) — cosecx
) 150 I
.. lim cot(x + ) — cotx
(VI) h—0 h
...y lim 1085 (JC + h) _loga X
(vii) h—0 h
(o lim att - a
h—0 h
.. lim 1 1
X11 .3 ~ 3
G 10 { (x +h)’ xs}
(xiv) — , el
h—=0 p NESE VX
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log . (1 + l)
lim 5. 2

. oy lim x-1
@ x—0 X i x—1 log .x
oo lim log, (2x — 1) .+ lim log, (x +1)
iii iv —ee -
) %51 x-1 ) v 50 Vr+1 -1
lim log, (x - 1) L lim e™ -1
) Xx—>2 3% _ 3y 42 (vi) x—0 x
(Vu) hm Pax _ e—ax (Vul) hm eSx _ er
x—=0 X =0 e4x _ €3x
2x X x
. lim a - 1 lim a = h
N 0 v o Ty
. lim 27N -1 o im a —a "
N N
.. lim 3 -3 . lim 3 -2
(xiii) i1 y o1 (xiv) x>0 47 _ 3
x—1
lim 2 -1
(xv) o1 —\/I T
Evaluate the following :
w im Vx +1-1 o lim VX o+ —\/5
(i) x—=0 5 (i) x=0
X X
s lim Jx - V5 . lim V3 - 2v - 43
(iii) _ (iv) _—
x—=5 yx_5 x—0 X
(V) ]]]T"I m - 2 (Vi) ]lm _\-2 - JT
x—b -5 x—1 -\/T—l
1
o lim VX -Db —+a-1b vonn lim XM — .
(vii) Yo a R ,(a>D) (viii) 1 T , (m, n are integers)
xt -1
y o+ 1 -1 i
. im im ) )
™ N0 o (o m o (JyET - W)
& lim 2 2 . lim 1+ x -1 - x
(xi) Y [\/\ +1 - \/.\ - 1] (xii) 0 ,
3
e im0+ 9)F =27 .« lim V1 +x-41-x
H S0 X () x50 1+x-Y1-x
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8.

lim

2
ay + ax +axt + ...

(xv)

Evaluate the following limits :

. 2
X290 by + by + byx™ + .

ol sinx
W 0
X
3
2 2
i X° + 2x + 3x
() Do T =5 7
2x% — 2x? + 4x?
(v) {”iw ¥ l\/xd' +at -t - nz}
] v1 x -1
(vii) l¥m loge Norx- 7
0 X
.y lim a)’
(ix) Yo loge (l + xJ
Py
i) . = . anx
X—>— T
— - X
1
(xiii) L{ljm o [a"‘ _ 1]
singx _a
btanx (elimii.\' IIJ
(XV) hm

x—=0 bsinax — atan bx

Examine the existence of the following limits :

x>0 4 1982

(iii) BIE) o cosecx

1
(V) hm X

xr—0+

Find the value of a if,

(ii)

(iv)

(vi)

lim
xX—

lim

N e

o0

(vi) Y0 cos (sinx)

2
lim X -4
(viii) = log>
o2 BT a2
i 1
(x) 1]“—1)0 loge (1 + bx)*
(i) lim x 1 1 — sin’x
X11 ) oy —
¥ 8 osiy
\'I‘l |x2 b X 1
xle X -1
: lim
(xiv) =
x—0 \/1 +x0 42 -1
lim
n tanx
2
lim x
xr—0-
lim 1
x—=0 1
e -1
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G lim tamex-o) 1 Giy lm lanm g
xX—o X - 2 x—=>0 sin2x
iy tm =0 vy im0
x—0 X r—=>T1 (x - 1) log.a
i log, 2x — 3
v) ini 2 ie(,f- -2 ) =1
14.8 Introduction to differentiation
The study of differential calculus originated in the process of solving the following three problems :
1. from the astronomical considerations particularly involving an attempt to have a better
approximation of © as developed by Bhaskaracharya, Madhava and Nilakantha,
2. finding the tangent to any arbitrary curve as developed by Fermat and Leibnitz,
3. finding the rate of change as developed by Fermat and Newton.
(See the introductory remark in Chapter 14)

That the differential calculus is a very important tool in every branch of science can be realized
from the apt remark of G.F.B. Riemann : “Physics became a science only after the invention of
differential calculus.” We begin the subject with the following fundamental concept.

14.9 Instantaneous Rate of Change and differentiability :

When a quantity undergoes change, the change in the quantity is always associated, in almost
every field of human endeavour, with the rate at which the quantity changes. The rate of change in
the quantity may be observed with respect to another quantity such as time, distane or position in
space etc. In some problems, it is required to find not only the average rate of change but the
instantaneous rate of change, i.e. the rate at which the quantity changes at any particular time. This
requirement is observed in Physics, Chemistry, Economics and many social sciences.

Let us examine a case of instantaneous rate of change by means of the following example.

Example 32

A person drives a car from a point A through the point B, a distance of 1.3 km. He starts
recording time in seconds every tenth of a kilometer as shown in the following table. How fast is he
travelling at the point B ? In other words, what is the rate of change of position of the person at the
instant when he is at B ?

The data are tabulated below.

Distance Time recorded
travelled in km. in seconds
0 (position A) 0=ta
0.1 16=t1
0.2 3l1=t
0.3 43 =13
0.4 bi=14
0.5 64=1ts
0.6 73 = t6

Distance Time recorded
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travelled in km. in seconds
0.7 82 =ty
0.8 90 =ts
0.9 98 =g
1.0 105 = t1o
1.1 112 =t11
1.2 118 = t12
1.3 (position B) 124 =t

Let S(t) denote the distance travelled in time t. Then t is the input (independent) variable and
distance S(f) is the output (dependent) variable. The average rate at which the person changes his
position, i.e. average speed, is given by the change in the output variable S(f) divided by the change

in the input variable .

Let us calculate (with the help of a calculator) the various average speeds as the person

approaches the point B.

Average speed at the point B as measured over the time interval [ ta, tg |

_ Distance covered _ S(tz) — S(t,)

= 90
Time taken tg = ta
= 122 0 yn/sec. =37.7419 ki /hr.
124 - 0

That measured over the interval [ ty, tg ]

1.3 - 01
=9 = ——— km/seC.
124 - 16
=39.9999 km /hr.

In similar fashion 9, = M =42.5806 km/hr.

g — 4

The entire sequence of average speeds as calculated successively over smaller and smaller time

intervals can be seen to be as follows.

Average speed in km /hr.
S0 = 37.7419 97 =51.4285
91 =39.9999 9s = 52.9422
92 = 42.5806 Y9 = 55.3846
93 = 44.4444 910 = 65.8481
94 = 46.2857 911 = 59.9999
95 = 47.9999 912 = 59.9999

96 =49.4117
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It is reasonable to say that the person is travelling at the rate of 60km/hr. at B. Notice that every
average reading comes closer and closer to this number and still closer reading near the point B
would increase the accuracy to determine the instantaneous rate of change of position  at B.

Of course when we say that the person is travelling at the rate of 60km/hr at B it does not mean
that he will travel 60kms in the next hour or for that matter 0.0166km in the next second. All that we

mean is that the rate with which the person is changing his position at the instant when he is at B is

60km /hr.

Notice further that if the person travels at uniform speed i.e. if there is no change in the rate at
which he is changing his position, then the instantaneous rate of change of position at any point
would remain a constant. In this case we do not have to calculate such averages as 9, 9, etc. to find

the rate of change at B.
With this background we now develop the principle of differentiability.

Differentiability

One of the most popular methods in arithmetic is unitary method. A typical problem reads like
"If 6 people can finish a piece of work in 14 days working for 5 hours a day then how many people
would be needed to finish it in 12 days if each of them works 7 hours a day ?" While solving this
problem using unitary method we tacitly assume that the amount of work turned out is proportional
to the number of people working, is also proportional to the number of hours they work per day and
also to the number of people working. This, what is called in another language is that the

dependence of the above parameters is linear.

But this happy situation is not always true in every case. For example the distance covered by a
body falling freely under gravity is not proportional to time. Nor is the velocity attained by a body is
proportional to the distance through which it has fallen. We can multiply examples where
dependence is not linear. In other words the graph of the function involved is not necessarily a
straight line. The researchers like Bhaskara, Fermat, Newton and Leibnitz propose that even if the

whole graph does not look like a straight line a small part of it looks nearly like a straight line.

/ pQ

(A Straight line) (The portion PQ is
nearly a straight line)

Figure 12.0
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i) f( A1) = flt)

0

f(t) —flto)
£

t—

If f is a function whose graph is a straight line then is a constant. The propounders

of calculus proposed why not consider functions such that is nearly a constant when

0
t—t, is small. What it means is that there is a constant m such that

f#) — flk)

t—t,

=m+r

where 7 can be made small by taking t close enough to fp. This means fhrfn M =m.
~f —th

Is this not our experience where we observe the speedometer of a moving vehicle over an
interval of time ? If we look at the speedometer for about half an hour it is likely that it was pointing
to different numbers at different time most of the times. May be for some moments it was pointing
to a fixed number over an interval. This means the speed was nearly constant over that interval i.e. it
covered equal distance in equal time interval, which is the same thing as saying that its average
speed over that interval was equal to its instantaneous velocity at every instant in the interval. We
also see that the fluctuation in speed is small over a small interval of time. That is to say that the
speed was nearly uniform. In other words average speed in a small interval is nearly equal to its
instantaneous speed at the beginning of the interval. If x(t) is the distance covered by the time ¢ then

x(t) —x(t,) —v +a
t—t, 0

where o is small when t—#, is small and v, is called its instantaneous speed at fo. All this means is
() — x(t,

t—ty t—1,

We make extensive use of this fact in numerical calculations. The principle of proportional
parts states that the increment in value of the function can be taken to be proportional to increment
in the value of the argument when the increment in the argument is small enough. Observe that sin
30° = 0.5000 and sin 31° = 0.5150. So there is an increase in value of sin x by 0.0150 for an increase
in value of x by 19 . If we assume that over the interval [30°, 319] the sine graph is nearly a straight

line then sin (30° + 0) = sin 30° + % x 8 when 8 is measured in minutes. We see in fact this

gives sin 30° 6° = 0.5015, sin 30 12° = 0.5030 which agrees with the value of sine for those angles
correct upto 4 places of decimal. If we apply the same principle for an increment of 2° then we
would get sin 32°- sin 300 = 0.0299. By this principle stated above we would get sin 31° = 0.51495
(which deviates from the tabular value at the fourth place). Reader is encouraged to try the same

thing for an increment of 50 at 300 and see what happens.

From the above discussion we see that the concept of instantaneous rate of change involves a

process of finding the limit to which the quotient of average changes approaches when the averages
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are taken over arbitrarily smaller and smaller intervals. We now formalise this process in what is

known as ‘derivative’ in mathematics.
14.10 Derivative :

Letf be a function of a variable x over an interval (a, ). Let a variable quantity y be given by
the rule y=f(x). Suppose now that x changes to x+8x, (8x # 0) and correspondingly y changes from
f (x) to f (x + 6x) where 8x (read ‘delta x’) is a small increment in x. We continue to call dx an

increment even when it is negative. The corresponding increment dy in y is given by

Sy = f(x +&x) - f (x)

and the increment ratio (sometimes called Newton quotient) is given by
sy _ [ (x+dE)—1 ()
dx ox .

Thus 3y/3x is the average rate of change of y. The instantaneous rate of change of y at the value
x is then given by the limit of 8y/8x as 8x — o, provided that the limit exists.
Definition :
A function f : (g, b) = Ris said to be derivable or differentiable at x € (g, D) if

lim Y lim S(x+8&x) = f(x)
—0 5 -0 Sy

exists. (D

This limit is called the derivative of f with respect to (w.r.t.) x.

d
The derivative of f is denoted by f” or d_y or sometimes by Dy or Df.
X

We can use an alternative notation. Let ¢ € (4, b) and f be derivable at ¢, then using the above

definition Q} _frgetim ferW =fo 2)
dx

h—>0 I

X=c
(We prefer the symbol I to 8x in this case.) If the limit on the right of (2) does not exist, the function
is not derivable at c. Let us analyze the limiting process of (1). How does dx — 0 ? It can do so from
the left i.e. by taking negative values or it can take only positive values (from the right). It leads to

the concept of Left Hand Derivative and Right Hand Derivative.

If the limit in (2) exists when /# — 0+ (i.e. when /1 — 0 through positive values only) the limit is
called the right hand derivative of f at ¢ and is denoted by f’ (c+). Similarly we define the left hand
derivative at c and denote it by f’(c-).

Thus File+) = }11{‘) . w R>0 3)

ff(c_)_ lim f(C - h) —f(C)

T h—0 _n

,h>0. (4)



| Limit and Differentiation 377

It is easily seen that the (unique) derivative of f(x) exists at x =cifand only iff’ (c +)and f’

(c-) both exist and are equal and is denoted by (2) irrespective of sign of .
Differentiability of a function on/in an interval (a,b)
Definition
If f has a derivative at every point of the interval (a, b) then it is said to be differentiable on (a, b). The

process of finding the derivative of a function is known as differentiation.

Example 33

Differentiate (i) x, (ii) x + 3, (iii) 3x + 4.

Solution :
(i) Lety=x
4y _ lim (x +6x) =X _ lim ox
Thend_x_éix—>0 Sx T8 —>0 §¢

(ii) Lety=x+3

4y lim (x +8x +3) — (x +3) _ |im E—‘l
dx x>0 S Tox—0

Then

(iii) Lety=3x+4

4y lim 3(x+8x)+4-Bx+4) _lim 3B

dx_Sx—>0 Ox T o —0 dx =3.

Then

In the above examples, the derivatives are the slopes of respectivelines y=x, y=x+3andy =

3x + 4.
Example 34

Differentiate x2.
Solution :

Lety = x2.

o dy im0+ &) = K
By definition, — = -
dx dx—0 ox

_ lim Sx (2x + 8x)
x>0 S

_ lim LS
= Sx—0 (2x + &x) = 2x.

Example 35
Find the derivative of +x + 1 atx =2.
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Solution :
Lety=+x + 1.
By (2) Y Clim N@ AR +1 -2 +1
y()ﬁ T h>0 ]
[rh 1:2 1
_ lim (”3+h_‘/§] V3 +h +43
h—0 I V3 +h +43
_ lim (3+n) -3
=0 31(43 +h + JE)
_ lim 1 _ 1 _
h=>0 J3 45 +4J3 243
Example 36

Differentiate a constant function.
Solution :

Lety=c¢ (constant)

dy _lim %y

By definition o0 g

:llm 2:0
x>0 §x ’

We observe that if 8x is any increment in x then 8y = 0 because there is no change in y.
Example 37
Test the differentiability of
f)=x+[x]atx=2.
Solution :

Heref(2)=2+[2]=4.

fres =lm SC ”’]3 D s

lim 2+h+[2+h] -4
T h—>0 h

lim 2+h+2-4
T h0 I

. A
frem) =lm LEZDZI@ 0

lim 2-h+[2-h]-4
h—>0 —_h

=1
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_lim 2-h+1-4

h—>0 —n
_lim —h-1_
T h>0 _p -

Sof’" 2+)=f" (2-).Thusf’ (2) does not exist. Hence f is not differentiable at x = 2.

| EXERCISE 14 (d) |I

Find the derivative of the following functions ‘ab initio’, that is, using the definition.

(1) 23 (i) a4
(i) 2+ 1 (iv) L
X
1 .
V) 3x + 2 (vi) x_z
(vii) ’; - (viii) £ (t—1)
x
(ix) s2-06s+5 (x) Vz
(xi) tan® (xii) cos20
(xiii) x sinx.

Find the derivative of the following functions from definition at the indicated points.

() r*atx=2 (i) 2x2+x+latx=1
(i) ¥+222-Tatx=0 (iv) tanxatxz%

(v) V3x +2 atx=0 (vi) Inxatx=2

(vii) e¥atx=1 (viii) sin 20 atezg.

Test whether the following functions are differentiable at the indicated points. If so find the
derivative.
xr+1
xr -1

\/; atx = 0.

atx=-1.

atl‘zl_
2

—
fl“-.
=
Il
P = A
M| =
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sin 1 x =0
6. fx) = x’ atx=0.
0, x=0
2 .1 0
7. f) =g YT atx =0,
0, x=0
14.11 Tangent line of a graph at a point:
We are already familiar with the concept of tangent line to circles and other elementary figures.
Intuitively, by tangent line to a graph (or curve) at a point P on it, we understand that it is a straight
>
line which is the “limiting position” of secant PQ of the graph when Q lies on the curve and
approaches P indefinitely. We have not yet developed any technique by which such a limiting
position of secants can be determined nor is there any reason to suppose that this limiting position
always exists. Consider, however, the graph given in the diagram below representing the function y
=f(x).
Let P(x, y) and Q(x+3x, y + dy) be two Y
points on the curve y=f(x) and suppose that A
<~
the secant PQ has an inclination measuring Q (r+dx, y+3y)
0 with x-axis. Then the figure shows that dy
x+ox)— f(x
tane = @zf( ) f( ) P(x,}’) S
ox ox Sx
We may suppose that f is
continuous at x, i.e. the graph of f(x) does
not have any gap or break at x, so that f(x
+ 8x) - f(x) as &x — 0, that is, (x + 8x, vy + 0 M N > X
dy) = (x, y) as dx = 0, or in other words, Q
approaches P.
- lim Sy . dy _ —_ o
If also it happens that ¢ —— exists, this limit equals — = f ’(x) which is the derivative of f at x
ox =0 8y dx
L
and, in this limiting position, the secant PQ is called the tangent line to the curve at P. The
inclination of the tangent line to x-axis is usually written as \f (Psi) (In fact® =y asQ—P)
Note that the proof of this result i.e. is based on figure 12.1 and no conclusion can, therefore, be
drawn from it. It however, suggests the following definition of the tangent line to a graph at a point.
Definition :

The tangent line to the graph of a function f at the point P = (xo, f (x0)) is

(i) the line through P with slope f * (xo) if f* (x0) exists; which is also given by f* (xo) = tanys
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fO) - f (&)

X — X,

lim
X=X,

(ii) the line x = xo if

The tangent line at (xo, f (x0)) does not exist if neither (i) nor (ii) holds.

If (i) holds, then clearly the equation of the required tangent line is :
y=f(x0) =f"(x0) (x=-xo).
If (ii) holds the equation of the tangent line is x = xo.

Example 38

Find the equation of the tangent to the parabola y = X2 at the point of the curve whose x—

coordinate is — 1.
Solution :

If x=-1, then y = 1, so that tangent line is to be determined at the point (-1, 1) .

d
Now y=1x?= Yooy
dx

:ﬂ} —2(-1)=-2
dx Jy =1

Hence the equation of the tangent line to the given curve at (-1, 1) is
y=-1==-2(x+1)
or y+2x+1=0.

14.12 Derivatives of some Standard Functions :

We shall find out derivatives of some standard functions from definition i.e. “ab initio” and use
them to find out derivatives of other functions. We observe that finding derivative ‘ab initio” is
essentially finding certain limits. In the following computations of derivatives, we suppose that the
respective functions are defined and differentiable at the points at which derivatives are calculated.

Example 39

d
If y=x% o eR, then d—y =qx%L

X
Proof :

Let 6x be a small increment in x and 8y be the corresponding increment in y.
Then5_y:(x+8x)—x _ ()t -2 -
dx ox (x +&x) — x zZ—Xx

writing z=x +dx. Asdx =0,z — x.

Hence d_y _ lim 6—‘1/
dx x>0 §y
_lim oz ="

= :(xxa—l
zZ—>X z — X

using a result we have learnt earlier. (See Example 24, Chapter 14)
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Note that we tacitly assume that x > 0 when « is a non integer in order to have y well defined.
Example 40
d
If y = sinx then Y = cosx.
dx
Proof :
Without repeating the preliminary explanations every time we differentiate a given function from
definition; we proceed as follows.
ﬂ _ lim S_y _ lim sin (x + &x) — sinx
dx_SX—)O ox T x>0 dx
(e )
2cos|x + —||sin —
_ lim 2 2
dx—0 &
['.'sinC—sinD = 2cosC +D sin €D ]
2 2
. Ox
. S l- SN b
_ lim . ., ox im
T or—0 " (" " 2] T -0 [af]
2
=cosx . 1 = cosx.
Example 41
d
If y = cosx then Y~ sinx.
dx
Proof :
dy _ lim Y _ lim cos (x + 8x) — cosx
dy ©Oox—>0 g dx—0 Sy
: ( ij ( . ij
- 2sin|x + —| |sin —
_ lim 2 2
ox—0 Sx
. [ox
li Ox) s (?)
__lim e oo YY) lim
T s 0 (l * zj T oxr—0 [8\)
=-sinx .1 = - sinx.
Example 42
d
If y = tanx then Y secy,
dx
Proof :

dy _lim %

Ay ox—0 &
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_ lim tan (x + dx) — tanx
- x>0 Sx

_ lim sin (x + 8x) cosx — sinx cos (x + dx)
C =0 cos (x + 8x) . cosx. dx

_lim sin {(x + &) — x}
T x>0 cos (x + 8x). cosx . dx

_ lim 1 lim sin 8x

- >0 cos(x + 8x). cosx S>>0 Fy

1
= >— . 1=sec
cos” X

2

X.

Similarly we can find that

2,

d
— cotx = — cosec“x.

dx
Example 43
d
If y = secx then &Y _ secx tanx.
dx
Proof :

ﬂ _ lim 8_*]
dx x—=>0 gy

_ lim sec (x + 6x) — secx
T x>0 Sx
_ lim cosx — cos(x + 8x)
ox >0 cosx. cos(x + &x). x
nfx ¢ Fanl- 5]
—2sin|x + —|sin|—- —
_ lim 2 2
ox — 0 cosx . cos (X + ox). dx

_ lim ‘ 2
6x =0 cos(x + 8x) cosx = 8x =0 (8,\.']
2.
= sm;c . 1 = secx tanx.
cos” x
Example 44
d
If y = cosecx then d—y = — cosecx cotx.
X
Proof :

ﬂ _ lim 8_1J

dx  ox—>0 gy
_ lim cosec (x + Ox) — cosecx
- x>0 Sx

sin (x + S—J“j sin (M)
2 lim
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_ lim sinx — sin (x + 8x)
ox =0 sinx . sin (x + 8x). dx

( SXJ ) ( ij
2co8|x + —| sin|— —
_ lim 2 2

=0 siny. sin(x + 8x). x

( 6xj , (6.1‘]
cos|x + — - sin| —
_ lim 2 lim N2/
6x =0 sin(x + 8x).sinxy x>0 (S-VJ
2
cos x
= —— .(=1) =-cosecx cotx.
sin” x

Example 45
Find derivative of \/; cosx from definition.
Solution :
Lety = \/}T COSX .
dy  lim Jx + 8x cos (x + 8x) — x cosx
Then =~ =
dx ox—0 Sx

= lim = N o+ Ox (cos(x+8x)—cosx) + cosx (\/x + ox - \/JT)]

-0 gy
_ lim o cos (x + 6x) — cosx +lim WX+ Ox .
T a0 v X ox S — 0 OS 5
_ lim I - lim cos (x + 0x) — cosx
T dx—0 Jl+83"8x—>0 Sx +
cosx gr‘n X 4+ 0 — x
v — 0 Sx(\/x + 8y + \/;)
=x (- sinx) + cosx . % (Ref. Example 41 for the second limit)
X
=— 4/x sinx + cosy
2Wx
! EXERCISE 14 (e) ||
1. Find derivatives of the following functions from definition.
i) 39{2—é (i) (4x-1)2
X
i) 24+ Vo (iv) v— - 1.
(v) iz+ 1
XE

2. (i) cos (ax +b) (i) x?sinx
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(iii) +/tanx (iv) cota?

(v) cosec3x.

3. (i) x sinx (i) Vx* + 1cosx
(iii) tanx —x2—2x.
14.13 Algebra of Derivatives :

Before we find out derivatives of other standard functions we shall learn some rules for
obtaining derivatives of sum, difference, product and quotient of two derivable functions.

Theorem 1 :
Let u and v be two derivable functions of x. Then (using ” notation for derivatives)
(i) (m+o)y=u+70
(i) (u-o)Y=u'-0’

(iii) (uv) =u'v+uv’
u u'v—w
(iv) (;} = T , provided o (x) # 0.

Proof :
(i) Lety=u+w.

If 3x is a small increment in x and du, Sv and Sy are corresponding increments in u#, v and y
respectively; then

y + 0y = (u+ du) + (v + dv)
= Oy =0u + dv

S x dx ox

Taking limit as 5x — 0 we have

4y _ lim & _ lim Su  lim @_d_”‘_l_@
dr  8x—>0 § S>>0 §¢  W—0 dx gy dx

or(u+o)' =u’+o0" (1)
Similarly we can prove (ii)..
(iii) Lety =uw.
Let 6x be a small increment in x and du, dv, 8y be corresponding increments in u, v and y
respectively.
Theny + 8y = (u + du) (v + &v)
= 1o + udv + vdu + dudv
= Oy = udv + vdu + Sudv

= 6—yza—l’lv+u@+6u@.

dx o« dx Sx
[Remark : Now, we make use of an important property of differentiable functions which will be
dealt with in Vol-II, which states ‘every differentiable functions is continuous. For this reason, u
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being a derivable (i.e. differentiable) function of x , is necessarily continuous. So u(x+6x) —u(x)
as dx— 0.
o0 = u(x+0x) - ul(x) = u(x) - u(x) =0, when 3x — 0. Thus dx— 0 < du — 0.
For the same reason, éx — 0 < dv — 0]
Hence we have from above
4y _lim % _lim % o4y Im 8o lim 5 lim v
dy Sx—=>0 g¢ dx—0 gy - dx—=0 6x du—-0 " "ox—0 &x
du do du
=—o+u—+0. —
dx dx dx
du do
=—ov+u—.
dx dx
ie.(wo)' =uo+uo’. (2
i = U
(iv) Lety= el
where u and v are derivable functions of x such that v(x) # 0. With usual interpretation of
notations.
5 _utou _u
Y v+ 8 v
_ vdu — udv
v (v + dv)
Su ov
by _ U " ax
5x  v(v + &0)
4y _tim % _[ Lm % _ lim & lim
So A dx—=0 &y ? x>0 Sx Yy 50 5x ] % 50— 0 (0 +80)
= u [ Refer remark in proof of (iii) ... 3)
0
Note: (1) Therule (1 £v)’ =u’ + v’ can be generalized to the case of more than two functions. Thus if

2

®3)

y=utovteot................. Tt
where 1, v, w,.............. , t are derivable functions of x then
dy _du ydo ydw s
dx dx  dx T dx dx
ie (utvtwt ... Tt '=u'to'tw ... +t (1)

The rule (uv) “ =u ‘v + uv ' can also be generalized to
(210 I ' =vow .. t+uo‘w...t+uow’ .. t+..... +uvw ...t .. 2

where(uvw ... t) is a product of finite numbers of derivable functions of x.

It follows from the result (2) by taking v = ¢, that if y = cu where ¢ is a constant and u is a

derivable function of x then

Z—Z =c Z—Z ie ()’ =cu’ “@
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Example 46

d
Find = ify=x3-x2+6.
dx

Solution :
d
dy _ 4 (3 =x2+06)
dx dx
_d i d6
Cdx dx dx
=32-2x+0
=3x2 - 2x.
Example 47

Fmd%ifyz V422 (1-x) + sinx.
X

Solution :

|
==
w

1l
o
+
N
=

|
[6%]
=

[
+
o]
Q
93]

=

Example 48

Find derivative of

(i) x?siny, (ii) Stanx
Solution :

(i) i(31'2 sinx) = 4 A2 sinx + 12 4 sinx
dx dx dx

= 2x sinx + x2 cosx.

(ii) A4 Stanx =5 A4 tanx, using (4)
dx dx

=5 sec?x.
Example 49

Find derivative of
f(x)zxzsinl,x;to,f(x)=oatx=0.
X

Solution :

(Refer to problem 7 of exercise 12 (a) .

Here we cannot apply the rule (2) to f (x) since sin 1 is not derivable at x = 0. So we proceed as
X

follows. By definition,
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h
. I sin— - 0
_ lim I
h—0 I
_ lim 1
“hsol i
1 : .1
Now 0 < hsm]— ’ = < | h|. (smcc sm}—‘ < 1)
1 1
If e >0then |hsin— | < € whenever || <& (= &).

h

Thus Im hsin]l =0= f'(0)=0.
1

h—0
Example 50
Find derivatives of
2x + 1 1
i , i) tanx, iii ]
() 21 (ii) ()f(x)
Solution :
d ) 2 ‘ d
dv At 41 (x* + 1)
C2( + 1) - @x + 12
«* +1)°
_20-x -
o+ 1)t

d ( sin xj
Cos X

.. d

1) — tanx

(i) dx d

[ d . . d ] .
— sinx . cosx —sinx — cosx | / cos?x
dx dx

cosx . cosx —sinx (- sm)] / cos?:

— — 2
= Bl = secoX.

Ccos X

This result has already been obtained ‘ab initio” earlier.

(iii) — [ 1 ] — 0. f(x)- 1I.f'(1‘]
d\ f(x) {f(\)}i
f'()
STTHOE e (5)
1f(1)}
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This is a useful formula.

We emphasize that the rules (1) = (5) should be committed to memory and unless
specifically asked to find derivatives from the first principle (or from ‘ab initio” or from
definition) one should always use these rules (and some more to follow) to find out the

! EXERCISE 14 (f) II

derivative of a given function.

Differentiate.
1. 28447 2. xS/
1 il 2
3. a3-b5x 4. v+ — - 3x
1 .01 !
5. x24+2x-sinx+5 6. — x?+ = a°
2 3
7. ax?+btany + Inx® 8. Jx (Vx+1)
9. (x-1) 10. (a2 =-x+2)2
11. xsinx — 5 12. tan 2x + sec 2x
1+ x
.2 - - —_
13. * __* 14. Q
x+1 1-x Jx o+ 1
15, tar'Lx — cosx 16, [_\r - 1)
sinx cosx x+1
17. 22 (1+x)(2-x) 18. a3 sinx edlnx
1
19. — +xInad 20. x2logx + secx
Ix g
-1
1. L 22, (P +1)(3x2+2x-7)
T+ 1
23.  cotx —secx — logiox 24, ﬂ
1 + cosx
o5, L tamy 26. [ 3526+ 23 | /(1 + )
1 + tanx
27. cosecx + cotx 28. tanZx + sec2x
29.  tan?x +aX 30. sinfv—-xInx
9 a - D"
31. cos<x + ¢X cosx 32. _
X
33, L1 3a, Imx
X+ 1 X

csin L
35. Show that f(x) = { * s x=0 is not differentiable at x = 0.

0 , x =0



CHAPTER 15)

Statistics

Strong minds discuss ideas, average minds discuss events, weak
minds discuss people.
- Socrates

15.1 Introduction :

The phenomenal world around us is a storehouse of knowledge. Not only human beings, birds
and animals also have wonderful ability to feel the ways things happen all around.

Through prolonged observation we have been able to develop the science of music, architecture,
medicines and a host of several others.

Observation can be both qualitative and quantitative. It is quantitative observations that will be
our sole concern in this chapter and we shall discuss how qualitative informations can be drawn out of
quantitative observations which are in the form of numbers better known as data. So, naturally, our
aim is to discuss the collection, organisation and interpretation of data. The science that develops as
aresult of such type of endeavour is known as ‘statistics” which derives its name from the latin word
‘status’ from which there originated the term ‘statist” and the present day ‘statistics’.

Statistical observations come into use in planning for social devlopment, analysis of trends in
various social sciences such as finance, economics, commerce and even natural sciences.

The relative exactness of a statistical information depends upon the prudence that an investigator
exercises in the collection and analysis of the data using appropriate methods.

On this score, the inferences of statistics differ from the laws of nature. Despite all measurs,
there is some amount of subjectivity in a statistical observationunlike the laws of natural science.

15.2 Measures of Dispersion

In a statistical investigation, the initial numerical observations, known as raw data, are organised
and what the organised collection of data or more technically the statistical distribution points to, is
known as its central tendency. For example, the central tendency of the temperature distribution
across the state of Odisha during the hottest summer is around 42° C. However, temperature readings
of individual places may differ from 42° C; some may be even more and some may be less.

To study howfar the individual items of a distribution differ from central tendency or central
value we develop the concept of ‘dispersion’.

Dispersion literally means ‘scatteredness’, that is, the variation of a set of observations from its
central value. We may recall that the central values or the measures of central tendency of observations
are usually given by
(a) mean (b) median (¢) mode.
By ‘mean’ we shall always mean, the arithmetic mean. For example if x, x,,....x_are the
observations, then the mean is given by
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X1 +.?r3 +.o.... +xn
n

x=

Median is the middle most observation when the data is arranged in either ascending or
descending order of magnitude. If there are n observations and » is odd, then the median is the

th
(nTH) observation in the arranged order.

2 2

For example the median of daily earnings of 15 workers: 16, 8, 16,7, 12, 6, 13, 14,16, 17,
19, 20,9, 12, 10 is calculated as 8" observation in the arranged order and it is 13.

th th
If n is even, the median is taken as the mean of the (E) and (ﬂ + 1) observations.

Mode is the value of the observation that occurs most.
For example in the data given above, 16 occurs most often and so mode is 16.

It ispossible that a set of data may have more than one mode if certain observation occurs
most often and equal number of times. If each observation occurs equal number times, the data
is said to have no mode. For example the data: 1, 2, 1, 2, 1, 2, has no mode while the data :
1,2,1,1,2,1,2,3, 2has two modes : 1, 2.

Such type of data with two modes is called a ‘bimodal’ distribution. A distribution with two
or more than two modes is called ‘multimodal’ and, analogously, one with a single or unique
mode is called “unimodal’.

Measres of Central tendency for grouped distribution

First let us clarify discrete and continuous frequency distributions:

Hitherto, we have discused discrete distributions, which are arangements of sets of observations
stated with their individual frequencies mentioned against each. We shall now consider-
Continuous distribution : If observed values are classified into class-intervals without gaps between
them, with frequencies mentioned interval-wise, then such a classification of data is known as a
continuous frequency distribution.

More specifically, inan internal (1, 1), 1  iscalled the lower limit and 1, the upper limit. If,
eventually, it happens that an observation equals 1, thenit is placed in the interval (1, 1). But if it
equals L, thenit is placed in (1,1, ). Ofcourse, depending upon situation, there may be exception
to this convention. This all depends upon the investigator who classifies the data.

In your highschool curriculum there have been detailed discussion on computation of mean
and median for a grouped frequency distribution. However, we present a briefrecapituation of the
formulae.

Mean

1
(i) Direct method : If x are the mid values 3 (L ,+1) ofthe intervals (1 , 1) with frequencies f,

i=1,2,...,n;then the mean ¥ is given by

7 = iif*l* ,where N = ij,
N5 i1
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(ii) Short cut methods :

(a) Taking a working mean :

Usually, to help out the computation of mean from being tedious, a working mean A is taken,
presumably close to the actual mean. The choice of A is actually made out of the experience gained

from organising data. However, it can be easily proved from the formulae for computation of mean
that ¥ is independent of the choice of A.

‘ . _ 1 n n I
With working meanA , X =A+§Zf,-d,-1 whered; =x, —A, N=3 /..
i=1 i=1

(b) Step-deviation method :
It can be easily proved that

c x, -A
X = A+—Zf U U = - and c is the uniform width (1-1. ) of the class-intervals
i1

and all other symbols have usual meaning.

Median

Median for a groped frequency distribtion is computed through the following steps :

N N+1
(i) Determine the position m of the median as EOI 3 according as N, the total
frequency, 1s even or odd.

(i)) Determine the cumulative frequencies (¢.f) of the intervals

(x_,,x,)as Zfz cfori=1.2,.., n

i=1

As on illustration, c.fof (x, x ) is /| and those of (x , x,), (x,, x,) are
ST/, ST/t f,and so on.

(iif) Determine the highest cumlative freqency ¢, which is not greater than m, the position
of the median, i.e. c <m.

(iv)Identify the interval corresponding to the cumulative frequency c as the ‘class
preceeding median-class’ and the next interval as the ‘median-class’.

(v) Compute median applying the formula :

. m—c
Median = /+

x h  where h =width of median-class,
m

[=lower limit of the median-class and

Jm= freqency (not c.f.) of the median-class
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Mode

For a grouped distribtion the mode is given by the empirical formula :
Mode = 3 Median-2 Mean.

N.B. Mark the adjective ‘empirical’ before ‘mode’. “‘Empirical’ is something which is established
through observations, not argument.

The above formula gives the model values in most grouped distributions, but applied to
discrete, i.e. ungrouped distributions, there is likelihood of weird results.

Considerthedata: 1, 1,2, 5, 6.
Obviously : Median =2, Mode =1 (it occurs maximm, 2 times) and mean = 3.
But ‘3 Median-2 Mean’ gives 0 as mode which is not the case !

Another formula for mode

Mode of a grouped frequency distribution can also be conveniently computed without
computing mean and median # by the formula :

+ fm'fl %
zfm-fl-fZ

Where /= lower limit of the class with maximum frequency fim

Mode =/

5

/.= frequency just before /.
J,=frequency just after f

N.B. The class-interval with frequency / is called the modal class.

Two sets of observations may have the same central value, yet their “scatteredness” may
differ. Consider for example the scores of three cricket players A, B, C in five consecutive
innings.

A: 48, 49,50,51,52

B: 30,40, 50, 60, 70

C: 50,90,10,70,30
All these three players have a mean score of 50 (and median 50), but it is clear even to a layman
that the three sets of scores differ remarkably from each other. For A, the range is 48 - 52 which
is within + 2 points of the mean value. For B, the range is 30 - 70, which is within+ 20 points of
the mean whereas for C, the range is within + 40 points of the mean.

Definition (Dispersion) : The variability or the scatter in the values of a set of observations is

known as dispersion.
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There are several measures of dispersion. In this section we shall confine our discussion to the

following measures :
(i) Range (i) Mean deviation
(iii) Variance (iv) Standard deviation.

Range : It is the simplest measure of dispersion of data. This gives the extent upto which the data
fluctate in general. It is defind as

Range = Maximum vale-Minimum value
Though range does not give us any information regarding the fluctuation of data about any

central value, it comes to use in quality control in production and prices, fluctuations in share
prices and, to a measure extent on weather forecast and also medical treatment.

Example-1
From the list of body temperatures of a patient, recorded at different hours, determine the
range of fluctuation:
Time 6a.m. 10am. 2p.m. 6p.m.  10p.m.
Temperature in
degrees Fahrenheit (°F) 99 100 104 102 101

Solution : Range = 104°F - 99°F = 5°F

Mean Deviation :

Definition : The mean deviation from the mean is defined as the mean value ofthe absolute deviations
from the mean. Mean deviation from the mean is generally called mean deviation. Thus

I « - !
Mean deviation = _Z|xi —X|, where X=;(x1 +x,+..4+x,) (1)

i=1

This definition can be adapted to a more general situaion as follows. Suppose that the observed
valuesarex , x,..., x_ with frequencies /, /., .....[, respectively, then

. J1x1 T foxy + Lt fax,
the mean value 3 is given by, ¥ = .
X158 Y, x f1+f2+....fn

The mean deviaion (M. D. in short) is then defined by

n E—
D filxi —x|
i=1
MD.= ————F 2
fi+ fato T @
Both(1) and (2) above can be slightly generalized as follows. Let a be a real number; if  x ,

X,,.....x_ar¢ the values of an observation then the mean deviaion froma is defined as
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i |xi —al
n 3
i=1
Similarly, if the observed values x, x.,...... x_occur with frequencies /,.f,....../, respectively,

then the mean deviation from «a is defined as the value
n
> filxi —al
i=1

- @)
2 fi
i=1
Example 2 (Mean deviation from mean) :
The scores ofa cricket player in 10 consecutive innings are
28,20, 52,90, 37, 68,51, 62,0, 17.
Find the mean deviation from the mean.

Clearly, T = 28+20+52+90+371(J)r68+51+62+0+17 =425

Therefore mean deviation from the mean =

14.5+22.5+9.5+47.5+5.5+25.5+85+19.5+42.5+255 _ 221 _
10 ~ 10 =221

Example 3 (Mean deviation from median):

Five fair coins are tossed and the number of heads noted. This experiment is repeated 20
times. From the results tabulated below, compute the mean deviation from the median and from

the mean.
Number of heads : 0 1 2 3 4 5 (x)
Frequency : 1 3 7 6 2 1 (/).
It is clear that the median is 2. Hence the mean deviation from 2 is given by the formula
5
2 filxi—2]
i=0 — 2+3+0+6+4+3_ g

20

5
> /i
i=0

~ _ 0+3+14+18+8+5 _ 48 _
The mean value x 30 20 24,

24+42+28+3.6+32+2.6
20

Variance : Letx, x,....,x_be asetofobservations with mean ¥ . Then their variance, denoted

= 0.94 .

Hence the mean deviation from the mean =
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RN _
by &%, is given by o= 2 :(xi -x)° (5
i=1

In other words, variance can be defined as the arithmetic meanof squares of the deviations from
the mean.

When the pbserved valuesx , x,,...., x_occur with frequenciesf, /....../ respectively their
variance, 6°,is defined by

D filx —%)?
o= - . (6)
2.1
i=1
Observe that if /, =/, = ....=f =1 then the definition given in (6) is same as the one given in (5).
To shorten writing, let N be the total frequency; that is,
N=f+ i+ . .+f.

4 2
Then &* Z%Zfi(xiz —2Xx,+X ) [ By (6)]
i1

n

_ 1 : X Ty 5
N X R TRy T

i=l

14 I
o = ﬁzllfixiz ~X (7)

This formula is often used in computations.

Standard Deviation

Definition : The positive square root of the variance is called the standard deviation.

It is denoted as o.

Example 4

A student scores the following marks in six tests.
45,54, 41,57, 43, 48.
Find the standard deviation of his scores.

The mean score ¥ = 45 + 54+416+57 +43+48 _ 48

Therefore, o> = 1 {(3)+62+(-7)*+ 9+ (-5)*+0}
6
=%{9+36+49+&p&5p=¥?.

Soo= 57735
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Example 5
The marks obtained by a group of 50 students are as follows :
Marks : 0-10 10 -20 20—-30 30-40 40-50
Number of students : 6 12 18 9 5

Find the standard deviation.
We can tabulate the above marks as follows :

Marks Number of Mid values (x;) /X fxk
students (f))
0-10 6 5 30 150
10-20 12 15 180 2,700
20— 30 18 25 450 11,250
30-40 9 35 315 11,025
40 - 50 5 45 225 10,125
N=50 1200 35,250.

We thus have

N =50, % fx, = 1200, ¥ fx?> = 35,250
7= ﬁzfixi =24,
o= % Sfx2 - ¥ = 705-576=129.

Standard deviationo ~11.35 .

Variance of grouped frequency distribution:
We have already given two formulae for computing variance,

(1) o’= %fo(xj_f)zsNZZfi

This 1s as per the definition of variance.

1 n
(Taking /,=/,= ... /=1, we get 6°= ;Zf, (x, —%)°
i—1

(i) The above formula was modified as

5

1 < 2 -2
o2 N;f’ i

Where summation extends over /x> only. This formula is often used in computations.
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Both the above formulae are suitable for computing variance in case of grouped frequency
1
distribution by taking x, as the mid values 3 (/,., +1;) ofthe class-intervals.

(i) To make the computations easy in case of comparatively larger data we now modify the second
formula by step-deviation :

x, —A

Litu = , where A = assumed mean and ¢ = uniform class interval, then
2 1 2 -2
O =§Zf,.x,. - X
=i2f. (A+cu)? —(A+=—= fu,)’
N I I N 1 i
1 2 2.2 2 2 ]' : 1
=—Zf,. (A" +cu, +2cAu,)—< A" +c —Zf,.u,. +2(:A—Zf,.u,.
N N N
= [izf. )AZ +iZf.u.2 +2—=AY fu, A = [iZf.u. jz —2=AY 1,
N 1 N 1 1 N 1 1 N i 14 N 1 1

2 ’ 2 2 o1 ’ :
=A +%Zf,—u,- -A"-c [EZ]F:“:) (N:zj;)

cofrps (k)]

Therefore

R I T . :
Uz=c |:F§f:“z _(Fi_lfi“i) } (8)

Accordingly standard deviation is given by

1 n 1 n 2
G_C‘/ﬁszui_(ﬁzfiuij (9)

Example 6

Find the mean deviation from the following distribution of age :
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Age groups
No. of persons &

Solution :

10

20

25

Intervals No. of persons Mid points

/,
0-10 8
10-20 10
20-30 20
30-40 25
40-50 24
50-60 28
60-70 17
70-80 9
80-90 7
90-100 2

N=150=)"1,

X.

1

5
15
25
35
45
55
65
75
85
95

24 28

Uu.

10
c 10
T=A+—E ‘U, =454+ =—x0 =
NS S, 150 43

Therefore, Mean Deviation =

Example 7

Given below is the distribution of marks of 120 students in mathematics.

Range

No. of Students

20-30 30-40 40-50 50-60 60-70

3

5

15

1

1
Zfi(xi_

N

Compute the variance and standard deviation.

Solution :

x, —45
10

2540

¥)="—=16.93
150

18

We apply the step-deviation method to find variance.

22

17 9
fiui Ixi - f|
-32 40
-30 30
-40 20
=25 10
0 0
28 10
34 20
27 30
28 40
10 50
Sfu=0 XLl

7

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

2

filxi _fl

320
300
400
250

280
340
270
280

—X|=2540

70-80  80-90 90-100

30

18

9
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Intervals Frequency Midvalue  ui= all 1 065 u’ Su,  Ju’?
']CI' xi

20-30 3 25 -4 16 -12 48
30-40 5 35 -3 9 -15 45
40-50 15 45 -2 4 -30 60
50-60 18 55 -1 1 -18 18
60-70 22 65 0 0 0 0

70-80 30 75 1 1 30 30
80-90 18 85 2 4 72 72
90-100 9 95 3 9 27 81

N=120 Sfu=18 fu’=354

n

2
. 1 1 «
V. T — ul-| = U
ariance o2 = ¢ {sz’u' (Nz;fu]}

i=1

354 (18 Y
_ 27 (22 |=29275
100~ [120 (120) }

Standard diviation 5=,/29275 ~ 17.11
15.3 Analysis of frequency distributions

We now come to the point which we indicated in the beginning of the chapter, i.e. drawing
qualitative informations from quantitative observations.

For this purpose we define :

Cocfficient of variation (C.V.)

B Standard Deviation

= x 100 Provided mean # 0.
Mean

C.v.=—x 100

= |Q

Observe that for a given distribution, standard deviation o and mean X are expressed in the

o
same unit in which the data of the distribution are given. While finding = we simply take into account

the numbers expressing ¢ and X, not their units, otherwise, such a division will be meaningless.

This C.V. is just a number devoid of any units.
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The coefficient of variance (or variation) C.V. expresses the measure of scatter or dispersion
or variability of the data from their central value. Being devoid of any unit C.V. facilitates comparison

between data expressed in different units.

The distribution with greater C.V. is said to be more variable or dispersed than that
with lesser C.V. To speak the other way, the distribution with lesser C.V. is said to be more

consistent than that with greater C.V.

Example - 8 :

The following is a distribution of weight against height of seven persons.
Height in meter (x,) 1.50 1.56 1.60 1.62 1.63 1.70
Weight in Kg. 50 57 60 65 65 67

Which one shows less variability, height or weight ?

Solution :

1.50+156+1.60+1.62+1.63+1.70+1.72
7

~ 1.62 meter

X, (Mean height) =
o =Variance of height

1
= {(1.50-1.62)+(1.56-1.62)+(1.60-1.62)*+(1.62-1.62)+(1.63-1.62)+

(1.70-1.62)>+(1.72-1.62)%}
2 ().005 meter?

o,=S.D. ofheight =,/ 005 ~0.71 meter

o, 071
oht =— X 100 = —— x 100 22 43.82 i
C.V. of height % ) U]

_ . 50+57+60+65+65+67+75
x,=Mean weight = . ~ 63 kg.

o;=Variance of weight = % {(50-63)*+ (57-63)*+ (60-63)*+

(65-63)2+ (65-63)2+ (67-63)2+ (75-63)*} = 54.57 kg>
0,=S.D. of weight = v54.57 kg ~ 7.39 kg.

739
T2 % 100 =
X, 63

C.V. of weight = x 1002 11.73 (>ii)

1.72
75
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From (i) and (ii) we conclude that weight shows less variability than height.

Example 9 :

Two players A and B have the following scores in the last 10 innings they have played.
A :83,0,41,45,1,103, 55,21, 49, 22.
B:5,0,7,14,10,11,12,3, 11, 7.

Find out who is a better player and who is a more consistent player.

— 420 =42

For A: Mean score x 10

VariancecsZ:% (412 + 42414 P4 412+ 612+ 134212+ T+ 20 = 2350 = 9916,

Standard deviaiono = 31.6.

CV.=— 100—%x100 ~75.24

X

ForB: Meansocre X = = 80_ =8

10
Variance o2 ——0 (9+64+1+1+36+4+9+16+25+9} = 11704 —17.4

Standard deviation o = 4.17.

417
_ —x100_—x100 £ 52.13
CV.= g

These calculations show that A is a better player (Since the mean of A’s scores 42 is greater
than that of B's) whereas B is a more consistent player. (Since the C.V. of B is scores is much
less than the C.V. of A’ s scores).

15.4  Analysis of frequency distribution with equal means but different variances

In case of equal means there is no necessity of finding out coefficient of variation (C.V) of
the data.

The distribution with lesser standard deviation is said to be more consistant or less variable
than that with greater standard deviation.

In otherwards, the distribution with greater standard deviation is more dispersed or scattered
than that with lesser standard deviation.

Example - 10

A student takes four successive tests in literature and mathematics. From the follwoing table
of his marks, comment on his average and consistency of performance is literature versus
mathematics.
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Literature (x) 74 76 67 71
Mathematics (y) 80 61 57 90
Solution :

Average marks in literature

T4+76+67+71
4

Average marks in mathematics

72

X =

_ 80461457490 _
4

Variance (literature) =

72

0_2_(74—72)2+(76—72)2+(67—72)2+(71—72)2 _

1 11.5
4
- S.D. (literature) ©,= /115 = 3.39
Variance (mathematics) =
2 2 2 2
522 B0=72) +(61-72)" +(57-72)" +(90-72)" _ 2

? 4
.. S.D. (mathematics) 0,= {18352 13.55

Comment : Average performance in both the subjects is same, but his performance shows
more consistency in literature than in mathematics.

EXERCISES 15

1. Ifthe values observed are 1, 2, ..., n each with frequency 1, find
() themean value

(i) the mean deviation from the mean separately for two cases when » is odd and when # is
evern.

For the same set of values as in (1) above, find the variance and standard deviation.
3. From the table below, find the mean value and the variance.
Values ; 1 2 3...m
Frequency 1 2 3...n
4. From the tables below, find the mean and the variance.
(a) Values ; 1 3 5...2n-1)
Frequency : 1 1 1 1
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(b) Values ; 2 4 6...2n
Frequency : 1 1 l....1
5. From the table below, calculate the mean and the variance.
Values : 0 1 2 r n
Frequency °C, "C, "C, "C. "C

(Those interested may take up this exercise after learning differentication from Volume-II- not
examineble in 1st year)

n
Hints Zfr: Z “Crzzn.
r=0

n

On the other hand, (1 +x)*= Z °C X"
r=0

n

Differentiating both sides with respect to x, we have n (1 +x)*'= Z r"C x .

r=0
n
Putting x = 1 in this equation, we obtain n. 2*' = hI °C, *).
r=0
_ n n-1 n
Thus the mean value X = — Y )

i . 1 2
For the standard deviation and variance, we have 6° = on Z r'C - x

To compute ¥ > "C . we again employ the Binomial Theorem.
(1+x)" =% "C_x".
Differentiating twice, we obtain n(n — 1) (1+x)*?=Xr(r— 1)"C x>

Put x = 1 in this equation : n (n — 1)2* > =3(*—r) "C,
= 520C — 3 *C =372 °C — n.2* (from (*))

Therefore, > "C =n(n—1)2""'=n(n+1)2">

5 = n(n+l)2n_2 _(E)Z _ n(n+l)—n2 n
2" 2

and =G+\FDA.

6. Fromthe following table calculate the mean, mean deviation from the mean and variance.

4 4

Marks Number of students
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10.

I1.

12.

13.

30 -35 5
35 -40 7
40 — 45 8
45 — 50 20
50 — 55 16
55 -60 12
60 — 65 7
65-170 5.
In a soccer league, two teams A and B have the following records :
A Goals scored : 0 1 2 3 4
Number of matches: 11 18 8 6 2
B: Goals scored : 0 1 2 3 4 5
Number of matches: 5 20 10 6 3

Which team is more consistent ? Which is a better team ?

Find the coefficient of variation c.v. for each of the following set of observations.

(i 2,3,4,2,5,7,8,9

(i) 5,7,9,10,7,5,8,9,3

(iii) 3, 3,3,4,4,4,5,5, 5.

Suppose the values x , x,,.... x_having frequency f ,....f,... /. respectively have mean value x

and variance ¢”. Let a be a fixed real number. Show that the values x, +a,x +a, ..., x_+a with
frequency /.. , ...... f, respectively will have mean value ¥ + a and variance .

Find the mean deviation from the mean and the standard deviationofa, a +d,a + 2d,....,a+
2nd; assume that d> 0.

Letx, x,, ...., x_be aset of observations with mean value 0 and variance s >and y , y,...y_be
another set of observation with mean value 0 and variance Gy2 . Find the mean value and variance

of the set of observations x , x,....x , ¥, ¥,, ...y, combined.
Find which group of the following data is more dispersed :

Range 10-20 20-30 30-40 40-50  50-60
(Group A) Frequency 5 | 3 2 1
(Group B) Frequency 1 3 2 3 1

The price of land per square meter and that of gold per ten grams over five consecutive years is
given below. Decide, which price mantains a better stability.

(Hint : Stability <> Consistency)
Price ofland/Sq. meter (X) 1500 2500 2600 3000 4000
Price of Gold/10gms () 2500 2600 2750 2900 2850



(CHAPTER 16)

Probability

A reasonable probability is the only certainty.

— E.W. Howe
He who has heard the same thing told by 12,000 eye-witnesses
has only 12,000 probabilities, which are equal to one strong
probability, which is far from certainty.

— Voltaire

16.0 Historical Introduction :

The foundations of the theory of probability are believed to have been laid by French
mathematicians Fermat (1604 — 1665); (the name is pronounced as ‘Ferma’), Pascal (1623-
1662) and Laplace (1949-1827), Italian mathematician Bernoulli (1654 — 1705) and a
host of others. However, long before those celebrated people arrived on the scene, an
Italian mathematician Jerome Cardan (1501 — 1576) in his little book ‘Liber de Ludo
Aleae’, considered to be a gambler’s manual, gave most of the laws of probability. Of
course, Cardan’s work never came to the notice of the international mathematical com-
munity. A solid mathematical foundation to the modern theory of probability was given
by the Russian mathematician A.N.Kolmogorov.

The theory of probability had its origin in the exchange of a series of letters between Pascal
and Fermat in the year 1654; it involved a very simple question posed by a gambler named
‘Chevalier de Meve’: how fairly the stakes at a game of dice were to be distributed if the game
was abruptly halted at some point before completion. The answer to this question involved a
sample space which is not uniform.

16.1 Basic Concepts

Probability is the study of random or nondeterministic events. For example, if we toss a fair
coin, then it results either in a head or a tail; of course we can’t be sure of the outcome in
advance. Suppose we repeat this process of tossing a coin a large number of times and keep a
record ofthe number of heads we get in the process. To be more precise, let

N = the number oftosses

n = the number of heads obtained,

What then do you expect of the ratio n/N as N becomes large ? If N = 1000, » may not be
exactly 500, but you may convince yourself by doing this experiment if necessary that
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n/N— % as N— oo . That this limit exists is provided by a theorem known as the Law of large
numbers. In this book, we shall not go to such lengths; instead, we will make a simple and
straight forward approach. To get started, let us first define some words which will be used
throughout this chapter.
Coming back to the toss of a coin again :
If we toss a coin, we are zsure to get either a head (/) or a tail (¢); that is either ‘#’
occurs or ‘#” occurs. In the language of probability, the set
S={h,t}
is called the “‘sample space’ of the experiment (of tossing a coin). Similarly, if we
throw a die, then we are sure to get one of these results : 1, 2, 3, 4, 5, 6. The set
S=1{1,2,3,4,5,6}
is the sample space of this experiment (of throwing a die). With these two examples in
mind, we are now ready to define the terms experiment and sample space.
Definition :
A random or statistical experiment is one in which
(1) all possible outcomes of the experiment are known in advance
(i1) a performance of an experiment results in an outcome which is not known in advance.
(iii)the experiment can be repeated under identical conditions.
Definition :
The sample space of an experiment is the set of all possible outcomes of the experiment.
Example 1:
Toss a coin twice. The possible outcomes are hh, ht, th, tt where h = head and 7 = tail.
Therefore the sample space is
S = {hh, ht, th, tt}.
Example 2 :
Toss a coin thrice. In this case
S = {hhh, hth, thh, tth, hht, htt, tht, ttt}.
Example 3 :
Throw a die twice. There are 36 possible outcomes
S= {1, 1, ,2),(1,3), (1,4, (1, 5),(,06),
(2, 1),(2,2),(2,3),(2,4), (2, 5),(2,06),
(3,1, (3,2),(3,3),3,4), (3, 5), (3, 06),
(4, 1), (4,2),(4,3), (4, 4), (4, 5), (4, 6),
(5, 1),(5,2),(5,3),(5,4), (5, 5),(5,06)
(6, 1), (6, 2), (6, 3), (6,4), (6, 5),(6,6)}.

The reader should not be led to believe that all sample spaces are finite.
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Example 4 :
One is allowed to go on tossing a coin until a head is obtained. In this case the sample space
is S={h, th, tth, ttth, ....} which is not finite.
Example S :

Pick up an integer at random from the set of positive integers. In this case

which is an infinite set.
Definition : Anclement of the sample space is called an elementary event.

Definition : A subset of a sample space S (of an experiment) is called an event. An event is said to
occur if an element of the event occurs.

Remark :

This definition applies to all sample spaces which are finite or countable infinity. For
uncountable sample spaces, a technical definition will apply which is beyond the scope of
this book. According to this definition.

(1) S itself is an event.
(i) The empty set ¢ is an event.
(ii1)) If A and B are events (that is A = S, B < S) then A U B is an event (that occurs if A
occurs or B occurs).
(iv) Similarly, A ~ B is an event (that occurs when both A and B occur)
(v) If Ais anevent A° (=S — A) is an (event that occurs when A does not occur.)
Sometimes, events (that are subsets of the sample space) can be described in words.
Example 6 :
Consider the sample space of Example 3 above.

Let A = {(1, 6), (2, 5), (3, 4), (5, 2), (6, 1)} which is a subset of S. Clearly, A can be
described as the event that sum of points obtained in two throws of a die is 7.

Example 7 :
In the same sample space, let B = {(6, 5), (5, 4), (4, 3), (3, 2), (2, 1)}.
B can then be described as the event that the result of the first throw of the die exceeds the
result of the second throw by 1.
Example 8 :
Consider Example 2 above; let C = {hht, hih, thh}.

C can then be described as the event of getting exactly 2 heads in tossing a coin three
times.
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Example 9 :

In the same example, if D = {hhh, 11t} then D can be described as the event of getting either
only heads or only tails in tossing a coin 3 times.

We are now in a position to define the probability of an event. But before we do so, we urge
the reader to consider the examples above once again a little more carefully. While tossing a coin
once

S={h,t}.
If the coin is unbiased (that is, it is loaded neither way), then both head and tail are equally likely
to occur. This means that if the experiment is repeated a large number of times, then half ofthe

times heads will occur and half ofthe times tails will occur; we say that such sample spaces are
equiprobable spaces or uniform spaces. We also say that the probability of getting a head is

% and the probability of getting a tail is % . In short,

P(h)=%,P(t)=%.

Again, if we are tossing a fair coin twice, the sample space is S = {hh, ht, th, 1f}.
Let A= {At, th}, that is the event of getting one head and one tail. Since each of those four
clementary events are equally likely to occur, A will occur twice out of four times; thus

size of A

_2 _
P(A)= 4 sizeof S~

We are intentionally using the word ‘size’ instead of the phrase ‘number of elements’; the

reason for this usage will appear a little later.

In the same way, let us cosider the experiment of throwing a die twice. The sample
space S in this case has 36 outcomes. If the die is a fair one, each elementary event is

equally likely to happen, and so, each will have probability of % Thus, for example, if

B is the event of getting a total of 8 in two throws of a die, then
B ={(6,2),(5,3),(4,4), (3,5), (2, 6)}.

_ <. 1 _ 5 _ sizeofB
Therefore, P(B) =5 % 36 36 size of S -

Thus for all experiments having finite sample spaces, we can make the following
definition.
Definition :
If the sample space S is finite, the probability of an event A denoted by P (A) is

size of A

defined as P (A) = Sizeof S -

It will now be easy to prove the following rules of probability by using the definition
given above.
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Rule 1 : Foranyevent A,0<P(A)<1.

Rule2: P (S)=1.

Rule 3 : IfA, B are mutually exclusive events, that is, when A~ B = ¢, then
P(AuB)=P (A)+P(B).
We can now prove a few propositions, using these elementary rules.

Theorem 1 : P (¢) =0, where ¢ is the empty set.

Proof: Let A be any event (that is, any subset of S). Since A~ ¢ = ¢, A and ¢ are mutually
exclusive events. Therefore, P(A) = P(A u ¢) = P(A) + P(¢) and hence P(¢) must be zero.
Theorem 2 : P(A°) =1 —P (A), where A° is the complement of A in S.
Proof : Since A and A° are mutually exclusive, we have by Rule 3,
P(A) + P(A) =P(A UAS =P (S)=1.
Hence the result.
Theorem 3 : If A, B are any two events and A — B, then P(A) < P(B).
Proof : Since A < B, B can be written as the union of two
disjoint sets :
B=Au((B-A). @
We can now apply Rule 3 to obtain
P(B) =P(A U (B - A)) = P(A) + P(B - A). B-a
Since P(B — A) > 0 (by Rule 1), it follows that P (B) > P(A).
Theorem 4 : For any two events A and B, P(A — B) = P(A) - P (A n B).
Proof : As is evident from the accompanying diagram, A can be
written as a union of two disjoint sets :
A=(A-B)u(AnB).
By applying Rule 3, we have
P(A)=P(A-B) + P (A nB).
Thus P (A-B) =P(A) - (A nB).
Theorem 5 : If A and B are two events, then P(A v B) = P(A) + P(B) — P(A n B).
Proof : From the diagram accompanying theorem 4, we can write A U B as a union of two
disjoint set : AuB=(A-B) uB.
By Rule 3 again, we have P(A U B) = P(A — B) + P(B).
By substituting the value of P (A — B) as obtained in Theorem 4, we have
P(A UB)=P(A)—~P(A~B)+P (B)=P (A)+P(B)-P (A nB).

Theorem 5 can be used repeatedly to prove the following.
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Corollary : IfA, B, C are events, then
P(AUBuUC)=P(A)+PB)+P(C)—P(AnB)—P(AnC)—P(BNC)+P(AnBn C).
Proof: Let AuB=D. Then
PAUBuUCO)=PDuUC)=PMD)+P(C)—P(DnC)
=P(AuB)+P(C)-P(AuB)n ()
=[P(A)+PB)-P(AnB)]+P(C)-P(AnC)u B O)). (1)
Ifwelet E=AnC and F =B ~ C then the last term becomes :
P(AnC)uBnO)
=P (E UF)=P(E) + P(F) - P(E nF)
=P(AnC)+PBNC)-P(AnBnC).
(2)
Putting (2) in (1), we get the desired result.
We will now illustrate the use of these theorems.
Example 10 :

Find the probability of getting an even number in throwing a die. As has been said earlier, the
sample space in this case S= {1, 2, 3,4, 5, 6} and the event A (of getting an ever number) is A
=1{2, 4, 6}.

. . . sizeofA _ 3 _ 1
So the probability of getting an even number is SizeofS 6 2

Example 11 :
A die is thrown twice. Find the probability that the sum of points obtained is 8.

As has been indicated earlier in Example 3, the sample space of this experiment has 36
elements. You don’t have to write all the points of the sample space to arrive at this conclusion.
When you throw a die once, you have 6 possible outcomes; another throw you have 6 possible
outcomes. Hence the total number ofpossible outcomes will be 6 x 6 =36. If Ais the event of
getting a sum of 8 points then

A=1{(6,2),(5,3),(4,4),(3,5),(2,06)}.

Thus the size of A is 5; so the required probability is % .

Example 12 :
Two cards are drawn from a standard pack of 52 cards. Find the probability that both cards
are aces.

Now 2 cards can be drawn from a pack of 52 cards in **C, ways. The size of the sample
space, therefore, is **C,. On the other hand there are only 4 aces. One can draw 2 aces in *C,

4
Co a1 21500 _ 1
ways; thus the required probability is 53 =57 X 25y = .
c, 20217 350 221
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Example 13 :

A bag contains 5 white and 3 black balls. If a ball is drawn at random, find the probability
that it is white.

Let the 5 white ballsbe W , W_, W_, W, and W, and let the black balls be B, B, and B..
Since only one ball is drawn, the sample space is clearly given by
S={W, W, W, W, W B, ,B,B, }
Thus the required probability is % .
Remark
The problem of picking up a ball of a perticular colour from a bag will occur frequently in
many problems. It is not, however, necessary to write the sample space in detail as written
above. The reader is urged to understand underlying principle.
Example 14 :
A bag contains 6 white and 7 black balls. If 2 balls are drawn at random, find the probability
that both balls are white.
The sample space in this case is of size °C,, and the event A of drawing 2 white balls is of
6
76 °C.. The required probability is T3> = ==
size °C,. The required probability is 13C2 =56
Example 15 :
Two balls are drawn from a bag containing 4 white and 6 black balls. Find the probability
that atleast one of the balls is white.

Let A be the event that one of the drawn balls is white the another is black; let B be the event
that both the balls are white; clearly A and B are mutually exclusive. We are interested in finding
the probability of A or B. We apply Rule 3 :

P (AuB)=P(A)+P(B)

o,x°c; ey,

+ = =
One can also look at this problem in another way. Let C represent the event of drawing at least
one white ball. Then what is C* ? Clearly, C* is the event that none of the two balls is white; in

other words, both the balls are black. So

6
&)
P (C%) =P (both balls are black) = Ty .~ = L
, T
By Theorem 2, P(C) =1 -P(C9) = 1 - % = %

Remark

The reader is urged to look at this problem carefully. There are many situations in which it
will be more convenient to compute the probability of A° than to directly compute that of A.
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EXERCISES 16 (a)

1. Acoinis tossed twice. Find the probability of getteing

(i) exactly one head (i) at least one head (i) at most one head.
2. Acoin is tossed three times. Find the probability of getting

(1) all heads (i) at most 2 heads (i)  at least 2 heads.

3. List all possible outcomes when a die is rolled twice (or a pair of dice is rolled once). Then find
the probability that

() sumofpointsis 10 (i) sum ofpoints is ataleast 10
(i) sumofpoints is at most 10.

Hint : For part (iii) : Let A be the event that the sum of points is at most 10; then A¢is the event that
the sum of points is either 11 or 12. Now compute the probabilities of getting a sum of 11, and
12; their sum is P(A®); now apply the rule P(A) + P(A%) = 1.

4. Adieisrolled twice. Find the probability that the result of the first roll exceeds the result ofthe
second roll by
1 3 (i) atleast3 (i) at most 3.

5. Acardis selected from 100 cards numbered 1 to 100. Ifthe card is selected at random, find the
probability that the number on the card is
(i) divisible by 5 (i) divisible by 2
(ii)) divisible by both 2 and 5(iv) divisible by either 2 or 5.

Hints : There are just 20 numbers, namely 5, 10 ....., 100 which are divisible by 5; so the probability

= % . For part (iii) : If a number is divisible by both 2 and 5, then it is divisible by 10. For part

(iv) : Let A be the event that the number is divisible by 2 and B be the event that the number is
divisible by 5. Find the probability of the event AUB.

6. Eight persons stand in a line at random. What is the probability that two persons X and Y don’t
stand together.

Hints : The sample space in this case is of size 8 ! Let A be the event that X and Y stand together.
You can consider X and Y tied together as one person so that altogether you have 7! arrangements;
but then in each such arrangement X and Y can interchange their places still staying together;
thus the total number of ways in which X and Y can stand togetheris2 x 7 !.

7.  What is the probability that four aces appear together when a pack of 52 cards is shuffled
completely ?

Hints : Try the same trick as in problem 6 above.

8. If 8 persons are to sit around a table, what is the probability that two personsX and Y
don’t sit together.

9. Adieisrolled three times. Find the probability that the numbers obtained are in strictly increasing
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order.

Hints : As has been remarked earlier, the sample space has 6 x 6 x 6 =216 points. The question
then is : how many of these 216 triples are in strictly increasing order that is like (1, 2, 3) or (1,
2, 5) etc ? If you want to count then you must do so carefully by following the procedure given
below. Keep the first entry fixed and enumerate all cases satisfying the given condition (of
increasing order). For example, we keep our first entry fixed,say 1, then all cases with first entry

I are
(1) First Entry Second Entry Third Entry
1 (fixed) 2 3 \

2 4
: L
2 6
3 4 > 10 cases
3 5
3 6
4 5
4 ] 6
5 ’ 6

(i) Now take the first entry as 2 and enumerate all cases, then 3 and finally 4.

Check that you have 20 cases in all so that the required probability is 2 .

A more elegant way oflooking at this problem : Let x,, x,, x, be triple withx, <x,<x, from
{1,2,3,4,5, 6}, the number of such triples is °C, = 20.
Author’s remark : I have asked this question in numerous class examinations and have got the
right answer in a variety of ways; one student even wrote all 216 triples of the sample space in
the centre-spread of his examination booklet. He then ticked all triples satisfying x, <x, <x,
and in the process missed only one !

10. Three phonorecords are removed from their jackets, played and then returned to the jackets at
random. Find the probability that (i) none of the records goes to the right jacket (i1) just one
record goes to the right jacket (ii) just two records go to the right jackets (iii) all three of them go
to the right jackets.

Hints : Let the records be numbered 1, 2, 3 and let their jackets be similarly numbered 1, 2, 3. The first
record can be put in any one of the three jackets; the second one then can be put in any one of the two
remaining jackets; for the third record there is just one jacket left. Thus the sample space in this case
has 3 x 2 x 1 =6 points, these can be explicitly writtendown :
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1.

12.

13.

14.

15.

16.

17.

18.

19.

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3,22 3 1) 3 12)p1 3 2)321)°\2 1 3)
In each of these matrices, the first row represents the records and the second row represents the

1 2 3
jackets in which they are put. For example, (2 3 J

means that record 1 is put in jacket 2, record 2 is the jacket 3 and record 3 is jacket 1.

Four records are taken out of their jackets, played and returned to the jackets at random. Find
the probability that

(1) none ofthe records goes into the right jacket.

(i) atleast onerecord is put in the right jacket.

Let A and B be events with P(A) = % P(B) = % and P(A ~ B) = % _Find

i) P(AUB) (i) P (A°)and P(B) (i) P(AS LB
(iv) P(A€ A BY) V) P(AABY (v) P(A¢ A B).

Let A and B be events with P(A) = 5. P(AUB) = 3 and (A~ B) = . Find
(1) PA) @) P(@®B) (i) P(AnB°

(iv) P (A UB").

There are 20 defective bulbs in a box of 100 bulbs. If 10 bulbs are chosen at random what is the
probability that (i) there are just 3 defective bulbs (ii) there are at least 3 defective bulbs.

A pair of dice is rolled once. Find the probability that the maximum of the two numbers (i) is
greater than 4 (ii) is 6.

4 girls and 4 boys sit in a row. Find the probability that (i) the four girls are together (ii) the boys
and girls sit in alternate seats.

A committee of 3 is to be chosen from among 10 people including X and Y. Find the probability
that

(1) Xisinthe committee (i) X or Y belongs to the committee

(iii) X and Y belong to the committee.

A class consists of 25 boys and 15 girls. If a committee of 6 is to be chosen at random, find the
probability that

(1) all members of the committee are girls.

(i1) all members of the committee are boys.

(iii)there are exactly 3 boys in the committee.

(iv) there are exactly 4 girls in the committee.

(v) there is at least one girl in the committee.

There are 20 boys and 10 girls in a class. [fa committee of 6 is to be chosen at random having
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20.

21.

22,

23.

24.

25.

26.

at least 2 boys and 2 girls, find the probability that
(i) there are 3 boys in the committee.
(i) there are 4 boys in the committee.

There are 120 students in a class who have opted for the following MIL. English 20, Oriya 70,
Bengali 30. Ifa student is chosen at random, find the probability that the student is studying.

(i) Bengali or English.
(i) neither Bengalinor English.
Sometimes, probability of an event A is expressed as follows. We say that odds in favour of A

are xto yifP(A) =77 f IR Similarly, we say that odds against A are x to y if P(A)
Y . .
RETEE Find P(A) and P(A°) if.

(i) oddsinfavourofAare2to5.
(i) oddsagainst A arc 4 to 3.
Six dice are rolled. Find the probability that all six faces show different numbers.

There are 60 tickets in a bag numbered 1 through 60. If a ticket is picked at random, find the
probability that the number on it is divisible by 2 or 5 and is not divisible by any of the numbers
3,4, 6.

Compute P(A AB) interm of P(A), P(B) and P(A ~B) where A A B denotes the symmetric
difference of A and B.

Three volumes of a book and five volumes of another book are placed at random on a
book shelf. Find the probability that all volumes of both the books will be found together.
2 black cards and 2 red cards are laying face down on a table. If you guess their colours
find the probability that you get

(1) none of them right (i1)) two of them right (1i1)  all four of them right.

Hints : Denote the cards by B B R R (B = black, R = red). The four cards can be kept face

. . ) !
down in any manner. You can guess their colours in ﬁ = 6 ways.

Cards kept face down : B B R R
Your guess (1) B B R R
(i) B R B R
(iiiy B R R B
(iv)y R R B B
(v) R B R B
(vi) R B B R

One can now answer the questions.

16.2Non - uniform Spaces

As remarked earlier, there are sample space which are not equiprobable. For example ifwe
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have a biased coin (a coin with manufacturing defect), then the sample space S = {&, ¢} need not be
equiprobable. Suppose, for example, the coin is such that the head turns up twice as often as the
tail; in other words the head turns up two-thirds of the times whereas the tail turns up one-third
ofthe times. We thus assign probabilities 2/3 to head and 1/3 to the tail.

In general if a finite sample space is not equiprobable, then probabilities can be assigned to
the elementary events and the probability of any event A is the sum of the probabilities ofall
points of A.

Example 16 :
Only three horses A, B and C are in arena. B is twice as likely to win as A and C is 3/2 times as
likely to win as B. Find their respective chances (probabilities) of winning the race.
Let p =probability that A wins’
Then 2p = probability that B wins;
and 3p = probability that C wins.

Since sum of all these probabilities must be 1, it follows thanp +2p +3p=1andp = % .

Example 17 :
A die is so weighted that even numbers have the same chance of appearing, odd numbers
have the same chance of appearing and each odd number is twice as likely to appear as an even
number. Find the probability that (i) and odd number appears (ii) an even number appears (iii) a
prime number appears.
Let P (n) be the probability that the number n appears when the die is rolled. We then have
P(2)=P@4)=P(6)= pand P(1) =P(3)=P(5)=2p
Since P(1) + P(2) + P(3) + P(4) + P(5) + P(6) =1, it follows that 9p =1 and p = 1

(i) Probability of getting an odd number ’
=P ({1,3,5})
=P(1) +P(3) + P(5)
=2p+2p+2p= g = %

1
3

(i) The probability of getting an even number = 1 — g = %

(iii) The probability of getting a prime number
=P({2,3,5}) =P(2) + P(3) + P(5)

=p+2p+2p=5p=g.
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EXERCISES 16 (b)

A school has six classes 1, 2, 3, 4, 5and 6. Classes 2, 3, 4, 5 and 6 cach have the same number
of students, but there are twice this number in calss 1. If a student in selected at random from the
school, what is the probability that he (she) will be in (i) class 1 (i) calss 2.

Let a die be weighted in such a way that the probability of getting a number » is propertional to
n.

(1) Find the probability of each elementary event.

(i) Find the probability of getting an even number in a single roll of the die.
(iif) Find the probability of getting an odd number in a single roll of the die.
(iv) Find the probability of getting a prime number in a single roll of the die.

Five boys and three girls are playing a chess tournament. All boys have the same probability p of
winning the tournament and all the girls have the same probability g of winning. If p = 24, find
the probability that

() aboy wins the tournament

(i)) a girl wins the tournament.



Real Number System

Cogito ergo sum (I think, therefore I am)

- Rene Descartes
1.0 Historical Introduction

Numbers perhaps were the earliest mathematical abstraction by man. How man first
came to use numbers is still shrouded in mystery. But by all evidence it seems it was the
carliest attempt by man to keep count of his livestock. Often he placed a stone against
every animal that left his cave in the morning, when the cattle returned to his cave after a
day’s grazing he casts away a stone, that he collected in the morning against his cattles,
for every animal that entered the cave. If some stones remained in the heap without being
cast for an animal then he understood that some of his animals are still at large. Lines
drawn on a bone of a young wolf dated 30, 000 years back discovered in Czechoslovakia
in groups of five suggest man perphaps had started using his figures for counting. It is
most likely that number signs were discovered before the number words as it is easier to
draw a line on stone, cut a notch on a piece of wood; rather than creat a well modulated
sound to identify numbers.

All these suggest that man discovered numbers to keep count of things. In a way it
was the “cardinal” aspect of numbers. But anthropological studies suggest an alternative
ordinal approach. It is suggested that order of precedence during ancient religious rituals
led to invention of numbers. This is an intersting theory but yet to be established. Till now
we do not know for certain how it all began.

Once it began, the mankind must have experienced enormous difficulty in writing and
pronouncing the symbols. Egyptians, Bablyonians, Mayans, Romans, Chinese, Indians
developed these method of symbols of numeration. The concept of zero originated in
India along with decimal system of enumeration and powerful place value system.
The bulk of Indian mathematics were generated and perfected largely by the following
Indian mathematicians :

Name of the Texts

Aapastava
Katyayana } Shulba Sutras 800 BC — 500 BC
Batyayana
Pingala Chhaanda Sutra 476 A.D.
Baraha Mihira Pancha Sidhhanta Tika 505 A.D.
Bruha Sambhita
Bharata Samhita
Bhaskar (1st) 522 A.D.
Brahma Gupta Brahma Siddhanta 598 A.D.
Sridhar (1st) Trishatika 750 A.D.
Mahavira Ganita Saara Sangraha 850 A.D.

Aryabhatta (2nd) Maha Saara Sangraha 950A.D.
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Sridhar (2nd) 1025 A.D.
Sri Pati Ganita Tilaka 1039 A.D.
Siddhanta Shekhara
Bhaskara (2nd) Siddhanta Shiromani 1114 -1185 AD.
Madhaba 1340 — 1425 AD.
Narayana 1350 A.D.
Nilakantha Tanta Sangraha 1500 A.D.
Ramanujan 1887 — 1919 A.D.

Natural Numbers and Integers :

However we have been using numbers ourselves since we are children. One of them is
counting. But if we ask ourselves what numbers are, perhaps many of us would have no
immediate answers. Well, it is really hard to define numbers. It will take quite some math-
ematical maturity and preparation to define numbers without being circular. So what we
propose is to try to analyse how we use numbers and agree to these rules in all our deal-
ings. We would like the set of numbers we used in counting as the set of natural num-
bers and denote it by N*.

We agree that :

1. Every natural number » has a successor which we tentatively denote by »*. In such a
case we call » a predecessor of n™.

2. There is a unique number in N* denoted by 0, which has no predecessor. Every other
clement of N* has a predecessor.

3. Form,neN,n =m"ifand only if m = n.

For Ac N*if (i) 0 € A and (i) » € A imply n* € A then A = N* (This is called the

principle of Mathematical Induction).

With these rules of the game called the Peano Axioms as described above we can
define mathematical operation on N* and develop the arithmetic of natural numbers with
which we are familiar.

Addition

(i) m+0=m yme N* (G)m+n"=m-+n)

So by principle of mathematical induction stated above one sees that the summ + n is
defined for every m, n € N*
Using the above definition it is not hard to show that

(i) m+n=n+m v m, n e N*
(i) n+m +p=m+@m+p v mnpeN
(i) m + 0 =m v m e N¥*
(ivyim+p=n+p=m=n v m, n pe N¥

Order in N*. There is an ordering in N* which is easily discernible :
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(1) 0<mifn e N* - {0} (i)n <n* v neN*
(ii)ym<n=m"<norm"=n, y m neN*
Subtraction :
Given m, n € N* and m > n there is a unique element d € N* such thatn +d =m

We write d = m — n. With this new notation we can now answer the restricted inverse
problem : which number added to m gives » ? This has an answer if m < n.

Multiplication

For m e N* define
m.0=0
m.n"=m.n+m

Additive inverse problem can be solved if we extend the natural numbers to the set of
integers Z= {0, £1,+2, ..... 1.

1.1 Arithmetic of Integers
The place value system is better understood with the help of':
Division Algorithm (Euclidean Algorithm) Given a natural number p > 1, every
integer can be expressed uniquely in the form.
s=qp+r0<r<p qcel
Using the above result which has been stated without proof, we can prove tha follow-
ing theorem.

Theorem 1 :
Given a natural number p > 1, every natural number can be written with the base p.

proot: Suppose X is a natural number. Using division algorithm write
X=x0+q1p,0£xo<p,q1<X (D
q,=x,+q,p0=x,<pq,<q, 2)
q,=x,+qp 0<x,<p,q,<q, 3)
q, ,—x, ,taep 0<x ,<pq,<q,, “4)

Discontinue the process as soon as q_ <p and write q_= X . Substitute the value of q, of (2)

in (1), then the value of q, of (3) in (1) and so on. These gradual substitutions give

X=x,+tqp=x+px +qp)=x,+xp+qp’

=X, txptp(x, T qp)=x,txptaptqp’

= e =x,txptxp ... +xpt.

We have proved that X can be written with the base p; Written symbolically
X=<X,X e , X, X, > P

Moreover, in the division algorithm, x, ..... x_are unique. Therefore, the expansion (5) of

x in base p is unique.
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Example 1 :
Express <2721>  inthe base 11.
Solution : 2721 =247 x 11 + 4, x, =4
247 =22x11+5, x =35
22 =2.11+0, x,=0

The algorithm stops since 2 <11, So <2721 > =<2054>

Example 2 :
Determine the number of digits 0f <21210>, when expressed in base 10.

Solution : <21210> =0+ 1.3 +23%+1.3°+23'=<210>

It is a three digit number.

Divisibility and Primality

An integer b is said to be divisible by an iteger a = 0 if there exists ann interger ¢ such that
b=ac. Then we write a | b. Otherwise, we write a | b.

Ifa | b, a is called a factor or divisor of » and 5 is called multiple of a.

Ifa|band 1 <|a|<|b]|, thena is called a proper divisor of 4. clearly, a | 0 and £ a
| a for each integer a # 0 and %1 | a for each integer a.

An integer a is called even if 2 | @ and odd otherwise. Thus 0, £ 2, £ 4, ... arc even
while +1, £3, £5, ... ar¢ odd. Any even integer is of the form 2m for some m € Z and any
odd integer is of the form 2m + 1 for some m e Z.

The following easily verifiable facts are left as exercises.

Proposition 1
Show that
(a) the sum of two even integers is even,
(b) the product of two even integers is even,
(c) the sum of two odd integers is even,
(d) the sum of an even and odd integer is odd,
(e) the product of two odd integers is odd.
(f) the product of an odd and an even integer is even,
(g) Ifa is odd, so is a" for every positive integer » (particular case of (¢)).
(h) If a is even, so is a" for every positive integer »n (particular case of (b)).

The following facts are also immediate consequences of definition and are left as
exercises.

Proposition 2
Prove that
(i) a|b=a|bcforeachc e Z,
(i)a|band b |c=a]c,
(iii)a |pand a | c = a | (bm + cn) for allm, n € Z,
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(ivya|bandb|a=a==+D,
V) al|b,a>0,b>0=a<bh,
(vi)if m is a nonzero integer, than a | b iff am | mb.

If m, n are positive integers, then in order to know if m | n, one way is to carry out
actual division of » by m which can be quite formidable when the integers are large. There
are some simple rules which settle the problem when m takes some specific values. It may
not be out of place to list some such rules here.

We writen=a_a,_, ..... a a

ifn=a,+10a, + ... + 10%a,.

(I) Ifris an integer = 1, thenn = aa,

if2"|aa

.... a, 1s divisible by 2* (supposing that n > r)

1

r—1 "7 0°*

This test is useful for small values for .

(ID If »is an integer 2 1, then 5" [n=aa, , ....a,if

Slaa.

r r—1

The rules that follow use the idea of congruence modulo m which is dealt with in the

chapter on Relations and Functions. We recall that n is congruent to » modulo m (or n=r
(mod m)) iff m | (n —r).

(III) Divisibility by 3 and 9

Since 10" =1 (mod 9) and hence 10" = 1 (mod 3) where r is any integer > 1,

we haven=aga, ..a,=a +ta_ +... +a,(mod 9) and n =a_+ ... +a, (mod 3).

Hence 3 |niff3 |a,+a + ... +a_and amniff 9|a ,+a + ... +a_

(IV) Divisibility by 11
Since 10" = (-1)" (mode 11), r being any integer = 0
n=aa_ ,..a=a —a +a, ... + (=1)*a, (mod 11).
Il [niff11]a, —a +...=(a,+a,+....)—(a, ~a, +..).
In other words 11niff 11 | (a — b), when a is the sum of the even place digits of
and b is that of the odd place digits of n.

For instance 112734502 1.

Remark
Whenever there is @ confusion of mistaking divide sign | with integer 1 we use bold
face to denote the divide sign.
The above rules settle divisibility of nbym=2,3,4, 5, 8, 9, 11, to choose only some
small values of m. Divisibility by 6 can be settled by considering divisibility by 2 and 3.
Divisibility by 10, 12 can be similarly settled.These rules do not not cover the case of m =
7. There is, however, a curious test given below that settles divisibility by 7, 11 and 13
simultaneously.
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(V) Divisibility by 7, 11, 13 simultaneously
Wehave 7. 11 .13 =1001 and 10° = —1 (mod 1001), 10°=1 (mod1001) etc.
Letn=25351268124. Then
n =124+ 268.10° + 351.10° + 25.10°
124 — 268 + 351 — 25 (mod 1001), that is, » = 475 — 293 (mod 1001)
or,n=182 (mod 7.11.13) or, n=2.7. 13 (mod 7. 11. 13)
Hence 7| n, 13 | n, but 11 | n.
The general rule is obvious from this.

The above method can be used to obtain rules for determining divisibility by numbers
such as 101, 10001 (=73 x 137), 100001 ..... and their factors.

(VD) A general division criterion

If 10 and m have no common factors and m | (10k, — 1) for some &, € Z, then

m|n=aa, .. a,iffm|aa, ... a, +ka,=n'".
To prove this, we have 10n" —n =10 xaa,_, ....a, +10 x ka,
-(10xaa_, ... a+a)=(10k, - 1) a,

and since m | (10k, — 1) by hypothesis, m | n iff m | 10n" or equivalently iff m | n" (by
Theorem 5 that is stated later).

This test covers divisibility by a large number of integers m. for instance, it covers the
casesof m=7,11, 13,17, 19, 23, 29 and so on. Note that m is necessarily odd. The test
can be repeated sufficient number of times to settle the divisibility.

Consider divisibility by 29.

Here we take k, = 3 since 10 x3 —1 is divisible by 29. Let n =7 25314 6 7 2. The
procedure is as follows.
29| 72531467 | 2
+6
72531473 o ka,=32=6
+9
72531516
+ 18
72533 |3
+9
7254 |2
+6
726 | 0
+0
7276
+ 18
90
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But 29 } 90. Hence 29 | n.
For m =31, we take k =— 3 since 10k — 1 =— 31 which is divisible by 31.
Letn=532691.
31| 53269 | 1 Now 31 | 32
-3
| 5326 | 6 Hence 31 | n.
—18
1530 | 8
—24
150 | 6
—18
32 (Collected from Ganita Bichitra 1995)
Now 31 {32 = 31 | n.

(V) As a last rule for testing divisibility, we recall that any product of » consecutive natural
numbers in divisible by r !. This has been proved in the chapter on permutations and
combinations.

The reader is urged to discover more of such rules.

Primes

An intger p > 1 is called a prime (or a Prime number) if it has no proper divisor, that
is, its only divisors are 1 and p.

Some of the initial primes are 2, 3, 5,7, 11, 13, 17, 19, 23, .... How long is this list ?
Indeed it was shown by the celebrated Greek mathematician Euclid (300 B. C) that the list
is infinite. A proof was divised by him for this, to which we shall come later.

The condition p >1 is a mathematical necessity that will be explained in due course.
We now come to a useful definition.

It is plain that a nonzero integer has only a finite number of divisors and so, if m, n are
integers, not both zero, then they can have only a finite number of common divisors, the
largest of which is called the greatest common divisor (g, c, d) of m and » denoted by
(m, n). Note that (m, n) always exists and is positive when m, n are not both zero.

If (m, n) = 1, we say that m, n are relatively prime. For instance, — 3 and 5 are
relatively prime.

On the other hand, if m, n are both nonzero integers, then an integer r is called a
common multiple of m, n if m | r, n | r. The least positive common multiple of two
nonzero integer (show that this necessarily exists) m, n is called their least common
multiple (/.c.m), denoted by [m, n].

The definitions of g. c. d and /.c.m can be extended to more than two integers in an
obvious manner. There are a number of interesting results about the g.c.d. and /.c.m, but
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we shall not treat them here. Rather we shall continue the discussion on primes which form a
very interesting subset of natural numbers.

Note that 2 is the least prime and is the only even prime, all other primes being odd.
Theorem 2 : Every integer > | (and hence every integer < — 1) has a prime factor.

Proof :
The result is proved by induction. It is true for n» = 2. Assume that it holds for all
integers between 2 and » (both 2 and n included). It will be shown that it holds for n + 1.
If n + 1 is prime this is obvious. Otherwise, n + 1 is composite and so one can write » + 1
= pg where 1 < p, ¢ < n. By the induction hypothesis, p has a prime factor which is, a
fortiori, a factor of n + 1, as required.[]
We use Theorem 2 to prove below the infinitude of primes.

Theorem 3 (Euclid). The number of primes is infinite.

Proof :
Suppose that the contrary is true, that is, there are only & primes, say,
2=p.3=p, P »P-Nown=pp_ ....p+1eZandhence by Theorem2, p. | n for

some i < k. However, the division of n by p, leaves a ramainder 1 which is a contradiction.
The conclusion now follows.

The next theorem, popularly known as the ‘fundamental theorem of arithmetic’, is
of prime importance in Number theory. The proof can be found in standard texts and is
omitted.

Theorem 4 Every integer> 1 can be expressed as a product of primes, uniquely apart from the
order of its prime factors.

A representation » =pl“1p2“2....pk°‘k, where p ., p,,......, p, are distinct primes in

ascending order and a.> 0 Vi, is called canonical (standard). In view of the uniqueness
requirement, 1 is excluded from the list of primes.
One consequence of Theorem 4 is that if m, n are integers > 1, then (m, n). [m, n] =
mrn.
The next theorem, whose proof’is also omitted, is one of the oft-used results concerning
divisibility.
Theorem S If a | bc and (a, b) = 1, then a | c.

The above result appears to be an easy consequence of Theorem 4, but the fact is that
the proof of Theorem 4 depends upon Theorem 5, so that these two results are equivalent.

The literature concerning divisibility and primality is alarmingly vast and anyone who
pursues through it, stands face to face with the great mystery that numbers possess. A
natural problem associated with any positive integer is whether it is a prime and if
composite, what are its factors. Mathematicians like Fermat, Mersenne, Lucas, Sophie
German, Wilson and many others discovered important classes of natural numbers that
bear their names and studied them with respect to the problem just posed. This happened
during the precomputer age. They discovered curious facts, committed errors that were
rectified in due course and left more problems unsolved than they solved. Number theory
is indeed replete with unsolved problems in spite of the abundance of jewel’s in the form
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ofrichresults that it has been able to collect. With the advent of super computers, a new era has
started. It has been possible to indentify larger and larger primes and factorize even larger
composites. The largest prime known until 1991, discovered by six mathematicians in 1989,
after several months of continuous computer work is 391581x 2219 — 1 and this number
contains more than 65,000 (and less than 75,000) digits ! The second largest prime, known
around that period, is 2*/°®'—1 which is one of the Mersenne class number. Several other large
primes are :

235235 x 270.000_ 1 8423 x 2598774
150093 > 10%%+ 1, 289 x 21802+ 1, (6952)* x 2992+ 1,
(collected from P. Ribenboim, The Little book ofbig primes)

The last quoted prime has 8006 digits and it was discovered by Dubner on March 12 in the
year 1986 after about 60 % 24 hours of computing spread over a period of 7 months !

There are various tests for deciding the primality of an integer » > 1 and it is not possible to
discus all those here. The most primitive way of determining if#>1 is a prime is to perform actual
division by all integers £>1 such that &> <n. This is quite convenient when # is not quite large,
using the divisibility tests already described.

Another procedure, known as the sieve of Eratosthenes, divised by the ancient Greek
mathematician Eratosthenes (3rd century B.C.) consists in writing all integers from 2 to n
in a table, striking off every second number after 2, every third number after 3 every fifth
number after five and so on until the same is carried out for the largest prime p such that
p* < n. For example, let n = 50. The table, after striking off, looks like this :

2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23 24 23
26 27 28 29 30 31 32 33 34 3% 36 37

38 39 40 41 42 43 44 45 46 47 48 49
50
It is needed to strike off all numbers multiples of 2, 3, 5, 7 (execpt these numbers)

and the numbers that are left are

2,3,5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47
which are all the primes upto 50. During the precomputer era, this was the chief device to
determine primality and surpisingly large primes could be discovered in this way. Even
with a high speed computer, this is not altogether a bad test for integers of moderate size,
as it involves a simple algorithm. On the contrary, the criterion of Wilson which states
that »n is a prime if (n —1) ! # — 1 (mod »), though theoretically quite gratifying, is not of
much practical value since there is no known algorithm to compute (#» —1) ! for large # in
comparatively small number of steps.
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Number of divisors :

To find the number of divisors of a composite number »n, we write

where a, b, ¢ arc different prime numbers and p, g, ¥ .... are positive integers. It is clear
that each term of the product

(l+a+a* ... +a?) (1+b+0b%...... +b)(1+c+c? ... + ) (D)
is a divisor of the given number. Hence the number of divisors is the number of terms in
the product, that is

(p+D) (g +D)(r+1) ...
To find the sum of the divisors of », we note that since each term in (1) is a divisor, the
sum of the divisors is equal to

ap+l 1 bq+l 1 Cr+l -1

a-1 ~b-1 ~c-1 77

Example 3:
Find the number and sum of divisors of 251680.
Solution : Since 251680 = 112 x 13 x 52 x 33 x 2 it follows that the number of divisors
=2+DA+DH2+DHB+1)(5+1)=432
and the sum of divisors

11-1 ~ 13-1 ~ 5-1 = 3-1 "~ 2-1 ~
Before we take up Fermat’s theorem, by way of preparation we now take up :

Example 4 :
*C_is divisible by p for 1< 7 < p-1, if p is prime.
Proof :

!
ﬁ and none of the factors of lor (p —r) ! can divide p for r <p, it is

clear that the factor p in p! will persist after all the factors of »! and (p-») ! have been
cancelled out.

Since pCr=

Example 5 :
n®— n is divisible by p when p is a prime number and for every natural number 7.

Proof : (By method of induction)
Observe that it is trivially true for » = 1. If we assume it to be true for n, then we sece
that (n+1)? — (nrl) = +>Cr*' + . +1-n—1
=n—n+ *C n'- o ?C o
But each of *C_is divisible by p for 1< r < p—1. So (n+1)? —(n+1) is divisible by p. The
result follows by induction.[ I
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Theorem 6 : (Fermat’s Little Theorem)

For any prime number p and any number », relatively prime to p, n*™ —1 is divisible by p.

Proof : Since ” —n=n(n?"'-1) and nisnot divisible by p, it follows from Example 5 that n**
— 1 divisible by p.

Example 6 :

Show that »° — n is divisible by 6.

Proof : Since »’ —n=n(n—1)(n+ 1), atleast one of n—1, n+ 1 is an even number. So it is divisible
by 2, but by Example 35, it is divisible by 3. Hence it is divisible by 6.

© % N w A

10.

EXERCISES -1 (a)

. Which ofthe following statements are True or False.

(a) In the following algorithm a quotient can not be equal to zero.

(b) In the division algorithm s = g.p+r, the remainder » is always strictly less than p.
(c) Eighty one in decimal scale when written in ternary scale has 1 in the unit place.
(d) Difference of two natural numbers is always a natural number.

e)aecZ beZ,bx0=abecZ

HhaeZ,beZ=a.bel’l

(g) 7 is a composite number.

(h) 111 is a composite number.

(1) The canonical factrorization of 210 is equal to 5. 2. 7. 3

(j) There are infinitely many integers.

(k) There are only finitely many primes.

(i) Show that every integer can be written as either 3m or 3m + 1 or 3m + 2 for some
integer m.

(i1) Show that every integer can be written as either 4m or 4m + 1 or 4m + 2 or 4m + 3 for
some integer m.

Show that every integer can be written as either Sm or 5m + 1 or Sm + 2 or 5Sm + 3
or Sm + 4 for some integer m.

Show that ifd, @ and d,| d, d> 0, d, >0 then d, | a.

Show that if d|a, d = 0 and k = 0 then kd | ka.

Show that if d | x and d | y then for any a and b, d | (ax + by).

Show thatifa=0,b=a,a|band b |athena=+h.

Write down all the primes less than 100 and count how many are there.

Find the only prime among 1, 11, 111 and 1111.

Write down the canonical factorisation of 832 and 420.
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11. Decideif 2* + 1 is a prime or a composite number.

12. Determine the number of digits of 2!®,

13. Show that 1% + 2% + 3% + 4% + 5 * is divisible by 15.

14. Show that n° — n is divisible by 30 and n’—n is divisible by 42.

15. Test the divisibility of following numbers by 7, 11, 13, 17
(i) 5383912 (i) 993407  (iii) 123456789

16. Find the number and sum of divisors of :
(i) 8064 (i) 9725 (iii) 53236

17. Show that 2**~1 is divisible by 15.

18. Show that
(i) n (ntl)(n +5) is divisible by 6
(i) n (n*— 1) (3n+2) is divisible by 24
(iii) »° —5n° + 4n is divisible by 120 if n > 2.

19. Prove that
(i) 3%+ 7 is divisible by 8

1.2 Rational Numbers

Integers are called whole numbers because these are used as measures of ““ whole” quantities
€.g. one man, two cows, area of unit square, credit of hundred rupees etc. However, for measuring
“parts of the whole” the rational or fractional numbers become necessary. Numbers ofthe

form g where p € Z, g € Z and ¢ = 0 are called rational numbers. 2 10 _7_ 25 =39 40

371571207 57 11

examples of rational numbers. Every integer can be written as % . We denote by Q the set ofall

rational numbers.

We know from elementary arithmetic that sum, difference, product, and quotient of
two rational numbers are rational numbers provided that in the case of division, the divisor
has to be non-zero.

It would be borne in mind that the set Q of rational numbers enjoys a property which
is called density property not shared by N and Z.

It states that between any two rational numbers there are infinitely many rational

numbers.
For example if a, b € Q then asz is a rational number and a < asz <b.
Infacta + 2=9 ¢ Qforn=1,2,3, ....anda<a-+ b ;a <b.

It is well knotn that the rational numbers can be expresSed as decimals. For example

=%=-2,% =.8§,%=3 where the last two decimals are recurring. In fact every recurring

decimal is a rational number. For example, suppose thatx = 7. Then 10x = 77 . Subtracting,
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1.3

we get 10x —x = 9x =7 so that so that x = %z.?.
Inadequacy of rationals

We know from the theorem of Pythagoras that the arca of the square on the hypotenuse
of a right angled triangle is equal to the sum of the areas of squares on the other two sides
of the triangle. So for a square of sides of unit length the square of the length of its
diagonal is equal to 2 square units. So the question is what is the length of the diagonal of
the square in terms of the sides of the square ? Pythagoras thought that if the sides are
divided into large enough equal parts then the diagonal of the square could be expressed
as an integral multiple of those parts. In other words we can divide the sides into g equal
parts (for some integer ¢) such that the length of the diagonal is p times the length of
these gth parts for some integer g. In modern parlance it means that the length of the
diagonal of a square is a rational multiple of its sides. But it was demonstrated by Greeks
themselves that there cannot be two non zero integral numbers p and g satisfying the
equation p* = 2¢*. It has not been determined when really a fool proof demonstration of
nonexistence of solution of the above equation was given. But Euclid’s Elements, which
are extant even today, does have a proof of nonexistence of solution which means that the
equation x* = 2 does not have a rational solution.

As the readers are already acquainted with the proof of this, we leave the proof.

In fact, we have a more general result : given a prime number p, there cannot be non
zero integers m and » such that pn* =m?,

This puts into jeopardy the scheme of arithmetization of geometry. The idea is that every
geometrical entity could be expressed in terms of numbers. But if our scheme of numbers
contain only rationals then this grand hope comes to nought even in the simple case of diagonal
ofa square not to mention of other lengths (like circumference of a circle in terms of'its diameter).

1.4 Real Numbers :

Since it was assumed that every length corresponds to a “number ”, those lengths which did
not Correspond to a rational number were to correspond to an “‘irrational number™.
Mathematicians accepted these for a long time. Not until late ninteenth century a formal theory
of real numbers was developed. We won’t develop them here. But rather give the rules of the
game in dealing with real numbers. What we need now is to expand the realm of numbers which
has all the properties of Q including ordering but which accommodates such numbers which
would correspond to length of diogonals of square etc. We list the rules to be followed : First of
all we shall call this new realm of numbers real numbers and shall denote it by the symbol R.

Axioms of Addition :
RA -1. R is closed under addition. viz for every pair of numbers a and b in R there is a unique

element @ + b € R.
a + b is called the sum ofa and b. This axiom is commonly known as the closure axiom.

RA -2 Addition in R is commutativeiec.a,beR =a+bhb=5b+ta
RA-3 Addition is associative n R i.e. foreverya, b,ce R,a+ (b tc)=(a+b)+ec.
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RA -4 There is an element in R called the additive identity and denoted by 0, such that fora e
R,at+0=a.

RA -5 For every a € R, there is a unique element in R, called the additive inverse of a and
written as — a, such that a + (—a) = 0.

The subtraction or difference of a and 5 is by definition a + (— ») and this is written as
a —b. We shall write @ + a = 2a and in general a + a + .... + a (added »n terms) as na. We
have immediately

(1) Cancellation Law :a, b, ce R, a+b=a+tc=>b=c
(i1)) Uniqueness of additive identity : a, b e R,a +b=a=»b=0
(iii) Uniqueness of additive inverse : a + b=0=a=-b

(iv) The additive inverse of additive inverse of a real number a is a itself.
aecR=>-(—-a)=a.

These can be proved easily as we proved in Z.

Proofof (i) Ifa + b = a + c adding (—a) to both sides we gets (—a) + (a + b)=(—a) +(a +¢)
which by associativity yields

(a)+a)+b=((-~a)+a)+c
=0+bhb=0+c =bHh =c.

It is clear also from commutativity of addition that right cancellation law also holds :
ab,ceR, a+b =c+b=a=c.

This facilitates the proof of uniqueness of additive identity.
Proofof(i)a tb=a=at+b=a+0=5h =0.
Proving (iil) and (iv) are exactly like similar assertion we made about Z.
Now we describe multiplication.
Axioms of Multiplication :
RM - 1.R is closed under multiplication i.e. for a pair of real numbers a, b € R, there is a

unique element, a.b € R, called the product of a and b. This is called the closure
axiom of multiplication.

RM -2 Multiplication is commutative i.e. a, b e R=a. b = b. a
RM - 3 Multiplication is associative : a, b, c € R a. (b.c) =(a. b) .c

RM - 4 There is an element in R, called the multiplicative identity and denoted by 1, such
that for everya e R, a. 1 = a.

RM - 5 For every nonzero element a € R, there is an element in R, called the multiplicative
inverse of a and written a!, such that a.a™' = 1.

The following axiom relates addition with multiplication :
RAM - 6 Multiplication is distributive over addition thatisa,h,ce R=a. (b +c)=a.b +a.

c. The axioms RA-1toRA -5, RM-1to RM-5and RAM -6 together are called field
axioms. In fact any set with this structure is called a field. So R is a field. In fact as a field
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it contains the field of rational numbers.
We have already seen that for a € R, b € R - {0} we can define ab! which is called

the quotient of @ and 4. It is customary to denote this by % ora-=b.
We write a* for a. a In general a......a (n times) is written a®. We can prove the
following as a consequence of the field axioms.
(i) Cancellation law : a, b, c R,a=0, ab=ac=>b =c.
(ii) The multiplicative identity is unique.
(ii1) The multiplicative inverse of the multiplicative inverse of a # 0 is itself i.e. fora € R

- 10}, (@) = a

The proof of these are very much similar to those we proved earlier for addition. The
reader is encouraged to work out the proofs.

In the axioms of multiplication we did not mention about multiplication by zero. We
introduced zero as the additive identity. All the rules of arithmetic regarding multiplication
by O follow easily from the distributive law :

Werecorda . 0=0

Indeed 0.a= (0+0).a=0.a+0.a

=0+0.a=0.a+0.a =0=0.a.

Recall that while defining multiplicative inverse we excluded 0. The reason is :

Zero has no multiplicative inverse :

If 0 had a multiplicative inverse a (say) then we would get .0 = 1 which contradicts
our contention (proved just now) that a.0 = 0.
It is also easy to prove :
Ifaz0thena'l=z, 0, forifa!=0 then a.a'= a. 0=0butaa!=1.
We have also
Ifa, b e Rand a. b = 0 then either a=00rb=0
Its demonstration is straight forward.
a=0andab =0
= (a'ayb=a' (ab)=0
Buta'a=1s0b =0.
We can now prove the formula : (—a). (- b) = a. b
which often baffled us during our High School days.
Since (—a).b+a.b= (—a+a).b=0.b=0, we get(—a).b=—(a. b) (additive inverse)
putting —b for b, (—a) (-b) = — (a (-b)) = —(—ab)=a.b.

Binomial Theorem

We have proved Binomial Theorem in Chapter 3 by using combinatorial techniques. We
shall now present an alternative proof whichis based on algebraic propertics of R and
method of induction.
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Theorem 7 :
(@+tby=a +"C a'b+. ... +Ca b+ ...+ "C D
Proof :
Suppose the above statement is p_. Then clearly it is true for n = 1. Suppose it is true for n
= k. Then by using the algebraic properties of R, we obtain
(@a+b)''=(a+bF@+b)=@+*Ca'b+... + b*) (a + b)
=dt+ (*C,+ Dab+ ... +(*C, +*C,_ yad- b +ber!
(by collecting the coefficients of like powers of @ and b)
=ad +MIC a" b+ +XIC @ b + b
by using the fact that *C_ +*C_ =*"'C (1<, r<k)
(proved in Chapter 3). Hence p, , | is true. This proves that p_is true for all n.J

Ordering in R ;
Besides the axioms of ficld, R has an additional property which we introduce as
follows :
P 1 Some numbers x in R are called positive, (and written as x > 0 or 0 <x) we denote the set
of such elements by P.
P2 x,y eP=x+yePandx. yeP
P3 xeR=xePorx=0o0r—xeP.
If we wirte — P = { —x - x € P} then P3 can be written as R =P u{0}u (-P).
It is also clear that P ~ (—P) = ¢ . Since if x ¢ P ~ (-P) then x + (— x) € P and this is a
contradiction.
If x € (= P) we call x a negative number and write this as x < 0 or 0 > x.
Now we define ordering in R as follows.
Fora, b e RbyP3 cithera—bhePora—b=00rb —a e P.Incasea—b € P. we write
a> b equivalently b <a.If a—b = 0thena=>.
If b — a € P we write b > a or equivalently a < b.
By P1, P2, P3 it clear that for a, » ¢ R
eithera<bora=»hborb <a.
We have
Proposition : If a € R and a = 0 then a? € P, thatis , a* > 0. In particular 1 > 0.
Proof : Ifa € R— {0} then either @ € P or (— a) € P. (By P2)
a* ePor(—a)(—a)eP
But (—a) (— a) = a* This proves that @* > 0. Since 1 = 0, it now follows that 1 > 0.
Proposition : Fora, b, € R, (i) ab >0 ifboth a and b are positive or both (—a), (—b) are positive.
(i) ifab <0, eithera<0andb>0ora>0and b <0.
(i) a < b, c>0=ac <bc
(iv) a<b,c<0=ac>bc
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Indeeda <b=h—a >0, Soifc > 0 then by P2
(b—a).c>0=bc>ac

Ifa<p andc <Othen(h—a)(—c) >0
=—bc +ac>0

= ac > bc

Rest of the proofare left as exercise.

Absolute value : If ¢ is a real number, then the absolute value (modulus) of a, denoted by |4|, is

defined as
B aifa >0
laf = —aifa < 0.

For example :10|=0,|2|= 2,|-3|=— (3)=3,|n-3|=n-3and |3 —n|=n—-3. One easily
verifies the following properties regarding the absolute value.
Properties :
1. The absolute value of a real number « is always non negative. Morcover, the absolute
value |a| =0 if and only if a = 0.
lal=[-a] v aeR
3. —|a|<a< |a|equality holding on one side at a time.
Fora>0, [x|<aifandonly if —a<x<a.

Proof : Let |x| <a. But we have by Property 3, —x < |x| and x < |x|
So —x <a and x < a . Combining these two we get —a <x <a.
Conversely suppose —a<x<a.Incasex>0wehave |x| = x= |x] <alncasex<0we
have x| =-x=—-x<a = —-a <Xx.
5. Triangle inequality ;
For a, b e R|a+ b| < |a|+ |b|.
Proof : We know as such that
—la|<a<|a|] and—|b| <b < |b|
=—(lal*+|b))<a+b<|a| + |b]|
= |a +b| <|al| + |b]|
6. [la|—|b| [ <|a—b|<la| +|b]|
7. Fora, b eR|a.b|=|al. |b]
Proof : There can be four casesinall () a >0, b >0 (i) a <0, b<0, (i) a<0,b >0,
(iv) a =2 0, b < 0. Verification in all these cases proves our result.
Some Inequalities :

Using the properties of order stated above we can obtain many important inequalities for
real numbers.

(i) a beR =a*+h*>2ab
Since (a — b)* > 0 the inequality follows where equality holds if and only ifa = b.
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.~ a+b 1 2ab
(in) > 2 (ab)® 2 P

i.e Arithmetic Mean > Geometric Mean > Harmonic Mean.

fora, beR,

Equality occurs when a = b.
Proof : Sincea, b e R,, “a, Vb are real.

Now from (i) above
1

+b
(Nay+ (b 22 Jg b =95~ 2 @) 2 (1)
Taking %, % in place of a and » we have
1.1
1.1 1
b 1 [1 2ab
“2 z\/; Ez(ab)22a+b ............. 2)
From (1) and (2), (ii) follows
The above result can be generalised to a finite set of positive numbers a, a., ...... a_as
follows

. . 1 1 1
H.M. = Reciprocal of the A. M of the reciprocals = n / {a+£+ ----- an]

Then AM>GM >HM ............. 3)
where equality holds iff the numbers are equal.
Proof of (3) in the general case is beyond the scope of the book.

(iii) Weighted Means :
Ifa,a,.... a >0and m,m, ... m_ arepositive rationals then
may +myds+.....+ moa U (my+mp +......4+ny )
B = > e’ ag”| 4)

m+my .. +my,
Equality holds whena, =a,...=a_.

Proof : Case I :1Ifm,m, ..., m_ are positive integers, taking AM and GM of m numbers

each equal to a,, m, numbers each equal to a,,...., m numbers each equal to a , the inequality

(4) follows from (3)
Case Il : If m, m,, ....m_are positive rationals,

Let m = % ,i=1,2,..n,where p, g, e N
1

L
LetL=L.C.Mof{q,,q,, ...... g} and L = %
1
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myay +mpay +.... +myay, Lipia; + Loprar +.... 4L pray

Then =
my+mp+...... +my, L1p1+L2p2+......+ann
> [af"%afﬂ? ........ anL”P”]U(L]Pﬁ -------- )
LI(LJPI+....+LyPy)
L]P /L I /L

= [al 1 63!221i ........ a,f“P"/ i| (by case I)

_ [afnlaéng ........ a™ ] V(Mp+MD + ...t iy )
(iv)Ifa, a, ..., a >0 and are unequal, then

m
ain‘l' aén‘l' ..... +a al + a2 o +an (5)
" 0| e

according as m ¢ (0, 1) orm € (0, 1).
The proof is omitted.

Corollary : From the‘ginequality (3) It follows that if the sum of n positive numbers

is constant, their product is maximum when they are equal and if the product is constant,

the sum is least when they are equal.
Example 7 : Show that for positive numbers a, a, ..... a,

a a a a a
e T s ] e R
612 613 614 an al -
a a a
Proof : Use the result : AM > GM for the numbers i i »»»»»»» f

1r+2r+3rn+ »»»»»»»» +”r) > ( n)t

Example 8 : Show that for any non-zero real number r, (

Proof : Since 1, 2, 3, ...n are all unequal we use the result that AM > GM

1

r T -

that is, 1 +2 +......4n >(1fj 2r____nr)n whence the result follows.
n

L.
Example 9 : If q, b, ¢ are positive and unequal numbers show that (a + ») (b + ¢) (¢ + a) > 8abc

Proof : By inequality (3), we obtain aTer> Vab, b;C> Jbe , C;a > Jea whence
multiplication)
a;rb_b;rc_c;a > JabJberea

The result is obtained on simplification.

Example 10 : If x and y are any two positive rational numbers then
X+ y xty
x> 5 = Xy~

Proof : Since x, y are positive rationals, using (4)

(on
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y.xtxy

We have ?

x+y

> |x}'—v-“ ]l-'f{x +¥)

2xy
xty
But AM > HM Hence

x+y x+y
x+y 2xy x+y 2xy .
2 T xty :( 2 ] = (Hy =Xy

= = Xy~

Also from (i)

X+y

(xy) (x+y*Y

XY_YX = 2xly

X+y
X+ y
= X 2 (T)

From (ii) and (iii) the result follows.

Example 11 : Show that forn e N

2\/”_2<1+L+L+ +L<2\fn—1

Solution : For m € N,

2Nm+1)=2Vm=2 {(Nm + 1) = Vm}

24 m+D—Vm}{ (m+1)+m}
J )+ m
1

2 2 1
= Jn+ ) +Nm S 2 T

and similarly

2 1
2. Am—=2m—-1)= \/E+\/Zm—l) >ﬁ'

Hence combining the results we have

2x/(m+1)—2«lm<ﬁ<2x/m—2«J(m—1) ________ i

Putting m = 2, 3, ...., n in (i) and adding columnwise we get

2x/(n+1)—2x/2<%+%+__.+ﬁ<2x/n—2

11 1
=2Vn+1)-3< YR, <2vVn-2.
Adding 1 to each part we get the desired inequality.

(ii)
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Irrationals :
We have always seen that 1 € R, We write
I1+1=2 1+2=31+3=4 l+n=n+1
But because 1 >0 wehave 0 <1 <2<3<4< ... <n<n+1<
Similarly-1 +(-1)=-2 .... etc and

=4 <=3 <=-2<-1<0.

Thus we have Z c R. Since forp, g € Z, ¢ = 0, g e R.wehaveZc QcR.

Are the inclusions proper ? We know Z < Q.

Unitil now we have not demonstrated a single element in R which is not in Q though there has
been indication that there are numbers which cannot be accommodated in Q.

To do that we assume the following result of R.

For every a > 0, n € N, there exists x € R such that x" = a.
It is obvious that x so constructed is positive and we write this asx = 7/, .

It follows from this theorem that as a solution of the equationx* =2 we get a real number /2
but we know that x* = 2 has no rational solution. This proves that ./ € R—Q.

We define R — Q to be the set of irrational numbers.

Hence ,/7 is anirrational number. Can you show that ,/3 is anirrational number ? Other
examples of irrationals are /7, \/11. /13, /17 » €tc.

It should not lead to the feeling that irrationals are obtained only as the solution of algebraic
equations. In fact there are irrational numbers like m and e which are not obtained as roots of
the algebraic equations.

We come across rationals more frequently than irrational. This leads to the misconception
that there are more number of rationals than irrationals. In fact this is not true. The truth is that
there are more number of irrationals than rationals and we cannot provide a proofof this within
the scope of this book.
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Theorem 7 :
Let a be rational and b be irrational. Then
(i) a + b is irrational (i1) ab is irrational if @ = 0.
Proof : (i) Suppose that @ + b is rational
then (@ + b)—a = b isrational as Q is closed under subtraction.
This is a contradiction. Hence a + b is irrational.
(i)) Suppose that ab is rational.
Then ab + a = b is rational as a = 0 is rational. But this is a contradiction.

Hence ab is irrational.

It follows from the above theorem that number like 2 + /3, e+ 5, 5w are irrational
numbers.

Now the question can be raised if the set of irrational numbers form an algebra just as
rationals do. Answer is “no”.

Let us consider the following example.

Example 7 :
Prove that /3 + /5 isirrational.
Solution :

Suppose that /3 + /5 is rational number and denote it by ». Then
RN
=>rr=3+5+2 /3 ..5

2 _
= 3.5 =558

2
Note that /3.5 = /15 is irrational (why ?) whereas © 2_8 is rational. This is a

contradiction. This proves that /3 + /5 is irrational.

Similarly the numbers like /2 + /3, e+ /7, ¢+ nare irrational numbers. It is wrong to
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think that the sum of two irrational numbers is irrational. For example
2-3)+2+3)=4
Similarly irrationals are also not closed under multiplication. For example
(2-3)x 2+ 3)=4-3=1

In fact one should note that irrational numbers are not closed under addition, subtraction,
multiplication and division.

Decimal representation of reals

We have seen that rationals can be expressed as terminating or recurring decimals. Thus
irrationals have non-recurring decimals. For example, the numbers like

.01001000100001000001.....
21221222122221222221 ...
5.321332133321333321....

are non-recurring and hence are examples of irrationals. We cannot express these numbers
fully as the process is unending. Similarly, if we proceed to extract the square root of 2, then
the process continues endlessly and the decimal representation is bound to be non - recurring
(otherwise it would be rational). So it may be necessary to determine a sequence of rationals
that are colse to /2 . since 17 < (/2 )* <2%it follows that 1 < /5 <2.

This is a crude approximation. However a better approximation can be achieved.
Since (1.4)*=1.96, (1.5)*=2.25 it follows that (1.4)* < (/2 )*<(1.5)?
thatis, 1.4 < |/ <1.5.
Similarly
141 < f5 <142

1.414< 5 <1.415
1.4142 < 2 <1.4143

1.41421 < 42 <1.41422
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This process can continue indefinitely. Thus we obtain a succession of rational number 1,
1.4,1.41,1.414,1.4142, 1.41421 which come closer or nearer to /2 from the left. Similarly
the succession of rational number 2, 1.5, 1.42, 1.415,1.4143, 1.41422 come nearer to /2
from the right of +/2 .

One can verify in calculator that 2 =1.414213562 ....

This is the situation when we say that the sequence of rational numbers approximate the
irrational number. Since the exact decimal representation of irrational numbers is not possible,
it is necessary to remain contented with an approximate rational value of such number. For
example, we may manage by saying that 1.41 is an approximate value of /2 . When we do this
we commit an error and that error is ./ —1.41. The less error we commit, the better.

Similar is the situation with regard to the values of /3, /5. /6, /7 - 410> +/11 €tc.
Note that (verify these in calculators or computers)

J3 =1.732050808..... J5 =2.236067978....

J6 =2.449489743 ... J7 =2.645751311 ...

There is another irrational number which is very interesting. That number is e, which is taken
as the base of the natural or Napier logarithm. In fact e is defined to be the real number which
is approximated by the sequence of rationals

n
(14
n
We postpone the discussion of this to a later chapter. However it may be mentioned that it is
an irrational number whose approximate value is given by

e=2.718281828459045.

A number is called an algebraic number if it is a root of some algebraic equation i.e.
polynomial equation with rational coefficient. Otherwise it is called a transcendental number.
/2 is analgebric number, as it is the root of the equation x* =2. But e is an irrational number
which is not algebraic; it is a transcendental number.

The number like sin 3,cos 10 are examples of irrational numbers which are transcendental.

The most interesting, the most elusive, the most used and perhaps the most popular irrational
number happens to be the number © which is the ratio of the circumference with the diameter



Appendix 443|

of any circle. This too is a transcendental number and its decimal representation correct upto
a few decimal places is given as

n=3.1415926535897932384626433852795028841971...

In fact in the year 1961, the value of = correct up to first 100265 places of decimal have
been found out by means of a computer.

3000 years age, Babylonians seemed to have the knowledge of this number and they took

23 =3.125 as the approximate value of . By comparing this value with the one given above,

8
one can sce that this is incorrect at the second place of decimal. Archmedes (300 B.C.) took

22
7

In Vedic period, Indians used +/10 as its approximate value and this is incorrect at the second
decimal place.

=3.142857 as the approximate value of n and this is incorrect at the third place of decimal.

Indian mathematician Aryabhatta (. 476 A.D.) put the approximate value of © as

% =3.1416 and this is incorrect at the fourth place. Bhaskar (1114 - 1185 A.D.) another

notable Indian mathematician took the approximate value of as % =31416 and this too is
incorrect at the fourth place. Madhaba (1340-1425) and also Gregory (1671), a German
mathematician expressed n in terms of an infinite series as follows :

=1-=+

+ %— (Madhab — Gregory series)

w|—
N |—
~3q|—

i
4

It should be mentioned that this series representation of n is known to have been worked
out by Hindu mathematicians in Kerala during 14th and 15th century. There are many interesting
series representation of m from which it would be possible to calculate the approximate value
of n by computing the first few terms of the series.

Some examples of series representation of = are as follows :

2 4
mo_ 1,1 .1, 1., 1 n_ 1.1 1. 1.1
G —12+22+32+42+52+..., 90~ 24+34 R

But the most notable contribution in the evalution of n is due to an Indian mathematician.

Guess who ?

Born 111 years ago (in December 1887 and died at the age of 32) the world famous Indian
mathematician genius Srinivas Ramanujan left behind a strange collection of over 4000 formulas.
We quote two ofhis famous formulas for = which are at once beautiful and obscure.
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Ramanujan formula :

)4n+2

1
s Tn (11034263 9011)[®

where (a) =a(a+1D)(a+2)...(a+n-1).

These formulas provide an extremely rapid way to calculate the value of n. In the year
1986, an American computer scientist used one of the above versions of Ramanujan’s formula
to calculate  correct upto 17 million places of decimal.

If we take the first term of the first series of Ramajunan formula, then we get the approximate

value of % tobe J§9 §<01103 and this gives the approximate value of © to be 3.14159262180330...
which is incorrect only at the eighth place of decimal. If one considers two terms, this gives an
approximation which is incorrect only at 16th place after decimal. Compare this fast series with
the slow series as the one of Madhaba-Gregory. If one calculate upto 600 terms in Madhaba-
Gregory series the error would be at the fourth place of decimal (as calculated by a computer).

Are these not nice and inscrutable formulas ! Should we not be proud that such amind is an
Indian !

Number Line :

We know how to represent rational numbers by points on a line. Let us recapitulate. Take a
geometrical line. Pick up any point A and represent it by 0. Take any point B to the right of it
and we callit 1. Thus the length of the segment AB is considered to be ofunit length. Similarly,
the natural numbers 2, 3, 4 ... can be dotted on the line which are equally spaced. Once this is
done we do the same thing to the left of the point A and mark the points—1,-2, ... ¢tc. Let n be
any positive natural number. Dividing the segment AB into # equal parts we can represent the
numbers
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1
n

5

on the segment A . By this way we can locate all rational points on the line.

What about the irrationls ? We also know how to plot the irrational numbers like /7 ,./3,
J5 etc. on the line by means of ruler and compass. Therefore these numbers are called
constructible numbers.

But there are certain irrational numbers like © and e which are not constructible by means of
ruler and compass.

Once rational points have been plotted on the line, we can find many points on the line which
have not been represented by rational numbers. These gaps correspond to irrational numbers.
To avoid any philosophical discussion about the representation ofreal numbers on a line, it is
safe to assume the following :

Axiom : There is a one-to-one correspondence between the set of real numbers and the points
ona line.

Once this is done, the line is called a number line and this serves as an infinite scale for
measurement of distances (a discussion about this follows).

Intervals :

Using the concept of the number line and distance we can define four types of intervals :
Let a, be R such that a <b. Then
(a,h)={xeR:a<x<b}

is called an open interval. The interval [a, b], called closed interval is defined as
[a,b]={xeR:a<x<h}
The interval [a, b)={x e R:a<x < b}

is called an open closed (or semi-open interval). This is closed on the left and open on the

right.
(a,b]={xe R:a<x<bh]

is too called a semi-closed (or semi-open interval) and this is open on the left and closed on
the right. In this sense we can also express R as
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R=(—ow,0)={xeR:—ow<x<w}

Similarly [a, ®) ={x e R:a<x <w}and (o, a)={xe R:—w<x<a}

Example 8 :

Find the interval for which

(i) 2x+ 7] < 10 (ii) | 5x-3|>1
Solution :

(i) 2x+7 < 10-10<2x+7<10

e-17<u<3eo -Tax<d
. . . 17 3
Thus the required interval is (_7’5j .
()| Sx-3|>7

< x 1s such that it does not satisfy | 5x -3 | < 7.

Now |5x -3 |<7 & -7<5x-3<7

<:>—4£5x£10<:>—%£x£2<:>x e[—%,Z:‘.

Thus ifx ¢ [—%2] thenx e R—[—%,Zji

— (—oo, —%)U(Z, w)={xeR:|5x-3>7}.

Quadratic Polynomial

An expression of the form p(x) = ax* + bx + c is called a quadratic polynomial in x € R
where it is assumed that the coefficients a, b, ¢ € R and a = 0. We know that the roots of the
quadratic equation p(x) = 0 are given by

_ b+ \/b2—4ac’ po —b+ Vb? —dac

a
2a 2a

and the roots are real if the discriminant D = 5% — 4ac = 0,
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Since p(x) can be factored as p(x) = a (x — a) (x — B) it follows that p(x) has the same sign
as a if x does not lie between the two real roots o and  and p(x) has the opposite sign
as a if x lies between the two real roots.

EXERCISES 1(b)

(1) Prove that the sum, difference, product of two rational numbers is a rational number.

(i)) Prove that the quotient obtained by the division of a rational number by a non zero rational
number is a rational number.

Prove that /5 isnot arational number.

Prove that /¢ is an irrational number.

Prove that the following numbers are irrational.:

2+ .5 ()2 /3 (iil) 2 +4/5 (iv) NG
Give examples of two irrational numbers whose
(1 sumisrational (i) sumis irrational
(i)  difference is rational (iv)  product is rational
(V) quotient is rational (vi)  quotient is irrational

Prove the following statements stating the field axioms used at each step.

) atb=a=b=0 i) —(-a)=a
(i) ab=1 =b=a' (a=0)

(V) (aV)'=a (a=0)

V) (ab)y'=b'a’ (a=0,b=0)

vi) —(a+b)=—a-b.
Answer the following questions where it is meaningful. Otherwise say ‘non-existent’.

(a) Whatisthe
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&
(id)
(i)
(iv)
V)
(vD)

(vi)
(b)

(D)
(i)
(iii)
(iv)
V)
(vi)

(vii)
(viii)

(c)

(d)

additive identity in the set of natural numbers ?
additive identity in the set of integers ?

additive identity in the set of rational numbers ?
additive identity in the set of real numbers
multiplicative identity in the set ofnatural numbers ?
multiplicative identity in the set of integers ?

multiplicative identity in the set of rational numbers ?

What is the

additive inverse of natural numbers in N 7
aditive inverse ofintegers in Z 7
additive inverse of rational numbers in Q ?
additive inverse of real numbers in R ?
multiplicative inverse ofnatural numbers in N ?
multiplicative inverse of integers in Z ?
multiplicative inverse of rational numbers in Q ?
multiplicative inverse of real numbers in R ?
What is the additive inverse of (in the set R) ?
2+V3 mor—e,-3,0

What is the multiplicative inverse of (in the set R)

1
\/§,2—\/§,ﬁ1,0

8. Prove thatif a> b, ¢ > d,thena—-d > b—c.

9.  Show thatif 0 <a <b, then 0 <% <

1

a
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23,

24.

If0<a<1,thenshowthat 0<a?’<1,0<a*<1,0<a*<]1.

Prove that there is no largest real number.

Let a >0 and b > 0. Show that a* > b*if and only ifa > b.

Leta>b>0and ¢>d> 0. Then show that ac > bd; and §>

Leta, b € Rsuch that a <b Then showthata < a+

Prove that1 >0,

Which of the following number are rational or irrational (why) ?

() .10110111011110111110....(i1) .123456789123456789

@ .91911911191111911111...

Give an approximate value of /3 which is correct up to third decimal place.

Which is bigger, m or % ?

If V10 is taken as the approximate value of = then at what stage is the error committed ?

Which is bigger : mor /19 ?

Show that forx, y € R,

@D eyl =[x ] i [ =[x

(iif) x| = |xf ) =" neN
Show that for x € R, |x|*=x%

Prove that

- A
|)"| (_1"¢ 0)

X

Y

()[4 = (r=0) (i

What is the absolute value of |%| (a=0)?

We can write the statement —1 <x<1by x e [-1, 1].

b;a,<bforn=2,3,4,5
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25.

26.

27.

28.

Similarly express the following intervals in the inequality form :
H  xel-22] () xe(-22) (i) xe[-2,2)
(iv) xe(=2,2] i x e (5,10) (i) x € [-3, o)

Express the following inequalities in the interval form :

() -l<x<5 i) -3<x<3 (i) — 3 <x<

| —

) - 3 <x<i V) —w<x<-—1.

Express the following subsets of R in the interval form,

@ fr:fx[<2} @) fr:fx|<2} (i) <2} o{-2}
(v) {x:]x<2}u{2} () fx:lx|<2and x=2} (v f{x:[x|>1}

(Vi) {x:|x|>5 x=5}(vii) f{x:[3x+1[<2} () fx:|5x—7< 2}

(x) x| 3x b3 <23xi)  {x:|1lx—35|<4} xii) [x:] = 7x+ 3| >S5}

(i) {x: |Tx+3]>Sand x - 3}

xiv) {x:|-7x+3|>5andx=0, x=3}.

Correct the mistakes if any

i 2e(2,3) i 2e(2,3] (i) 2e[2,3)
(iv)y 0e(l,5) v) 5e(l.)5) (v) 5¢(0,1)
(vii) -1 ¢ (-0, —1) (vi) 3 € [1, ©) (Xx) 3 e[3, o)

(x) 2 e (—x,?2).
Prove the following inequalities where concerned numbers are all positives.

(i) a*+b*+c*>ab+ bc+ ca

(i (a+b+o) (% +%+ %)>9unlessa—b—c
oooa  b,oc y @ b, d
(i) b +c+ a =3 (iv) b +c+ d * 024'
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State when strict inequality holds.

(v) (1-a)(1-b) (1) > 8abc provided thata+b+c=1

. 2ab
(i) ab z 4=

State when strict inequality holds, equality holds.

(i)  Ja — b < 4Jla-b|
(viii) Let 0 <a<b <c. Then
() 3a<a+b+c<3c

(B) 3a*<a*+ b*+c* <3¢

2 2 2.2 2
a a“+b“ +c c
(V) — < —F—— < =

c at+b+tc a
(8) a® b®> a®h?

Prove the following inequlities :

(ii) (|£)2 >nt

Gi) 2.4.6..2n<@m+1y

(ivy n»>1.3.5...2n=-1)

V) (mn+1)">2".n

V) ()’ >8 (1P +2°+ 3+ _4n), forn=3

(Vi) n(n+ 173 <8 (13+23+3%+ _+n)

(Vlll)m PRI SRR 3+1>1,nEN
. 1 1 1 1 4
) 1<1507 " 100z T 1003 T " 3001 < 3°
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Hints : For (i), (vii) use the fact thatifa , a., ..... a are positive which are not equal, then

m
+a , .
= J according as m does not or does lie

between 0 and 1.

30. Find the greatest value ofx?)’ where x and y are positive numbers satisfying Sx + 2y = 3.

2 2 3
[Hint. x*)° is greatest when (%X) [?y) is greatest. Use the corollary before example 7

31. Ifa, b, c are the sides of a tringle prove thatabc=(b+c—a) (c ta—>b) (a + b—c¢).

+
[Hint. take b +c—a=x,c+ta—-b=y =c= xzy etc]

32. Ifaand b are positive and unequal then show that 8(x* + %) (x* +°) > (x + y)°
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[Answers]]

Exercises 1 (a)
(1) B; (ii) A; (i) A; (iv) D: (v) B, (vi) A; (vil) C; (viii) B; (ix) C; (x) B.
Exercises 2 (b)

@ MnC)-P (bB)MNCAP (c) M—(CuP) (dPulC)-M
ePAC-M)UP " M-CO)u(CAM-P)uP~nCAM)

i) A=B=¢ (i)A=B (i) AcB (ivVArB=¢ (vA=B=U
A-B = B-A, AAB=BAA 4. Not true.

5. 10.100; 11.70; 12.16; 13.225: 14.25,35; 15.11.

Exercises 3 (a)

() {(0,0)}, (iD) {(a,a), (a,b), (a,c), (b,a), (b, b), (b,c); (iii) ¢ 2. (i) mn (i) 2™™ 3. () x=-3, y=2,
(i) x=1,y=0 (ii)x=—1,y=14.A=B:5.(-1,x), (0, %), (1y).

Exercises 3 (b)

(a) Any subset of {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1) (c, 2)}
(b) Any subset of {(1, a), (1, b), (1, ¢), (2, a), (2, b), (2, ¢)
(c) Empty set, only one
(d) {(a, 1), (B, D), (c, D}
{(a, 2), (b, 2), (c, 2)} are some examples of many one relations.
Similarly {(a, 1), (b, 1)}, {(a,2), (b, 1) (c, 2)}
{(a, 1), (a,2)}
{0, 1), (b, 2)}
{(c, 1), (¢, 2)} are some examples of one- many relations
{(a, 1), (b, 2)}, {(a,2), (c, 1)}
{(a,2), (b, 1)} . (b, 1), (¢, 2)}

{(a, 1), (c,2)}, {(b,2), (c, 1)} are some examples of one- one relations.

Q
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2. () D,=¢=R, (i) D, ,= AR, =B
(1) — (i)
D,.s=D,=D, ,=D,,,
Ro= RyZR SR,
3. () f={(,1),(2,2%...., (10, 10>} (i) /= {(1, 0), (0, 1), (-1, 0), (0,— 1)}

11.
13.

(iii) /= {(1, 1), (1, 3),(1,5),(2,2),(2,4), (3, 1), (3,3), (3,5), (4. 2), (4, 4)}
217177

() {(2,8),(3,27),(5,125),(7,343); (1) {2,3,5,7}; (1i1) {8,27,125,343}; (iv) {(8,2),(27,3), (125,5),
(343,7)}: (v) {8,27,125,343}; (vi) {2,3.5,7} .

() {(1,2), (2,4), (3,0); (ii) {1,2,3}; (iii) {2,4,6}; (iv) {(2,1), (4,2), (6,3); (V) {2,4,6}; (vD) {1,2,3}.

Exercises 3 (¢)

n™;3. (1) [-3,3]; (i) R; (i) R; (iv) R-{-1,1}; (v) R-{xeR)|fanx =-1}; (vi) R-{0}; (vil) R-{xeR]x<0};
(vii) [-3,4]-{0,1}; (ix) R; (x) (-1,1); (x1) {xeR|sinx>0}.

I 1 1
(@ [-1, 1], (D) [0,90), (i) [-1LOE GV R-{-135 (1) [ 5 5 1 (V) [ 1T (Vi) R (viid) [1,00)

3
domR=R, Range=[0,1); (ii) dom=[5 , ©), Range=10,%0); (iii)) dom=R-{2}, Range=R.
(a) (i) No, domf =X (Also two ordered pairs contain same first component); (ii) Yes; (iil) No, Element
‘a’ has two distinct images; (iv) Yes; (v) Yes; (vi) Yes.

(b) (i) dom= {a,b,c}, Range = {2,3,4}, (iv) dom= {a,b,c}, Range = {1} ; (v) dom=X, Range={1,2};
(vi) dom= X=Range.

1
©{@l), (b1, 1)} (@ {aa), (bb), ()} 8. 1.3

(1) x=1 or x=3; (i) x=2; 10. (1) x=2; (i1) x=0; (iii) {xeR|secx=0} U {x eR|cos x <0}
For (i) , (ii) and (iii)) dom =[-1,1], (iv) dom=[-1,1).
2x2-x+1;

Exercises 4 (a)

() +ve, (i)+ve, (ii)—ve, (ivytve (v)—ve, (vi)+ve, (vi)+ve, (vii)+ve
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2. (i) cos 15°, (i) tan 55°, (i) — cos 3° (iv) tan 18°, (v) — cot 18°, (vi) —cos 60°
(vii) — sin 50°, (viii) sec 20°
3. R- {(2n+1)§|n EZ} R—{nn|neZ)
4. [-L,1], 5.A=18°, 6.0
7. % 8. 1
Exercises 4 (b)
1. () F (i) F, (iii) T, (iv)T, (v)F, (vi)E, (vii) T, (viii) T, (ix) F, (x) F
2 0 55 N @ J3-1 0 -1
i) 1+ ﬁ (vii) /3 c0s25° (viii) % (ix) %
(x) 15° (x1) negative (xii) _Ti (xiii) sin 1° < sinl (xiv) tan 1 > tan 2
7. (@) 13, (ii) 25, (iii) 7, (iv) 15 8. (i) a
I1. ()cos(A+B+C)+cos(A+B-C) +cos(A-B+C)+cos(A-B -C)
(i) 4 cos (B+C) cos (C+A)cos(A+B)
3 _ (51 (B 3104245 (B
' 82
WD V104245 + (5-1) (W3 -1)
cos 3°=
82
2 sin ﬁ = \/2—\/2+ V2+42
Exercises 4 (¢)
L. () infinite, (if) 2n (iii) 0, () 4th (v) 75, (vi) 7, (vid) 1, (vii) 3, (%) %“ () 5
2 0ontE  ©F  @fechEREE
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In 23n
\ONT) 12° 12 °

3. () @n+1) %

nim

(i) 5_3-pn

4. () nm*

I

(iv)2nm*

UJ

(vii) 2nm + %

(x) 360n

T n
Tt

(xvi) nm, nm + (1) -~

(xix) 2nm, 2%
w T
13

1. () b= ccosA-+acos C(ii) isoceles (iii) 1
(iv) equilateral ™ 5 vi) V6 :2
(vii) A (viil) 5

3. (@)5:12 (i) 120° (i) \/%
(iv) 90° (v) 43

28. B=30°, A=90°,

(ii) 180 n—40+ (=1)"45

%) a4
V) 3 =

vl

() nm+ (1) %
Tn
V)2nmn+ 12,2nrc+ 12
(viii) 2nn,(4n+l)%,

(xii) nm—

% (xiv) 2nm +Z onn i% (xv) 2nm, 2nmt -

3’

’g (xvii) (2n + 1) % nni% (xviii) nm—
E w

Exercises 4 (d)

C=60°

vi) 2n+1) % nm+ =~

(xxi) (2n+1) g (xxit

(iii) (~1)" 5 +n 7 tan’ %

4

(ix) (2n +1)§, n+D)n, %nn

4,nn+tan 2£{3)

T
4

n _1p
4,2nn nm (—1) 7

i) (— 1)? +nmn, an + (-

(x)B (x)21
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10.

16.

9.

11.

19.

Exercises 6 (a)

4 .
80—24 /1a 4. X*—x+1 8. zjxzf
2_ 42
302 -1 . y 2.; 19 iv) =55 —
2= 11.4 12.100 13.0) 31 13 W=7 2

1
V3 (cos 0+ isin®), tan9=ﬁ. /3 (cosB +isin 6) where tan 0= /p . i 351'11%

Exercises 6 (b)

(1) ellipse (i1) hyperbola (iii) for |a| = ¢ a straight line, for |a| > ¢ no representation

cosn9=% [(cos©+isin®)"+ (cosO+ isinO) "]

1 1
(i) 2+ 30) (i) + (560 (i) < (742272 —47)2 . i(—V22732+47j2
1 1
@) 4 (@)2 N i[@]z V) +(a+i) i)+ [(@+ b)+i(a—b)]
J5+1
4
(i) cos 2% + isin 22T n=0,1,2,3,4.5,6
(i) cos dn + 1n+ sm4 1 n,n=0,1,2
6 3
1 4n—1

(i) 2= cos =1L +;in nn=0,1,2.3.45

12 12

1
(iv) z= 26 |:c058”4+1n + 151118”44_1 } ,n=0,12

2”4“ nisin 2”4+1n, n=0,1,2.3and cos%” n+isin2?”n,n=0, 1,2.3.4

COS
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4kn _
20. 0= (i) (ns2) k=0 123 23,0

Exercises 7 (a)

1. (i) Finite; (i) Infinite; (iii) finite; (iv) Empty;
2. () {1,234}, {..-3,-2,-1,0,1,2,3, ...}
(i) 7, 8, 9, ... (in both cases), No difference;
(iii) {...-4,-3,-2,-1,0,1,2, 3,4}, {0,1,2,3,4};
(iv) {000, -12, -11, -10}; (-0, -9)
V) {9,10,11,12}, (8,14)

3. (1) (-10, 0); (i) x> %; (1) [0,10]; (iv) (-3,2); (v) {xeZ |0 <x < 15}; (Vi) {x eN|x>1};

(vii) [4,5), x =4 ; (viii) (-0, g), {xeZ|x<l1}

5. () {(xeR|4<x< 6} 4(
(i) (- o0, 15) X'< >

12 | fn
c\\./

1
(i) [ » )

(iv) (3,5]
6. 1,5,5units; 7. 6and 7 units; 8. 5,6,10,15 units.
9. (21,23),(23,25),(25,27),(27,29).
10. (24,26),(26,28), (28,30), (30,32), (32,34)

Exercises 7 (b)

Y'4
Halfplane of x-y=0 containing (0,1) or any pt.(x,y)
HI x-y=0 with x<y.

v

1.
X|< 0
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2.
3x+4y-12

Halfplane 3x+4y-12=0 containing (0,0)

3. 4. 5
0.3)
‘2.1 (5,0)

/‘0 Y ©0) 3x+2y-5-0
x-y=0

(Halfplane of x-y=0 containing (2,1) (Half plane of x+2y-5=0 containing (0,0)

mcluding the line.

5. Solution Set (S.S.) is the half plane 7x-14y=14 containing the origin.

(Hence onwards draw the figures yourself following the first four illustrations.
6. Halfplane ofx+8y+10=0 containing the origin.
7. Halfplane of 5x+6y-12=0 containing the origin.
8. Halfplane of 3x-y=0 containing (0, 1).
9. Halfplane of 3x+8y-24 = 0 not containing origin.
10. Halfplane ofx+y-1 =0 not containing origin, including the line.
11. Halfplane ofy axis containing negative x axis.
12. Halfplane of y = 5 not containing origin.

Exercises 7 (c)
1 2 ) V=X 1
x-y=1

S S, is interior of the S.S. is intersection of half

quadrilateral OABC planes of both lines

containing the origin.
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3. Y 4,
/C N x-y+1=0
A c ><
/ /

/ X

The S.S. is Interior of triangle £YAC

3x-y-3=0

- [§)
X3y+30 /E3

A\

Interior of AABC.

v

B

xy=0 x=1

Interior of AOAB.

A .

B y

0]

x-y=0

/ (9] A\
3x+4y-12=0

S.S = interior ofthe quadrilateral OABC
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10.

17.

13.
17.

22.

e

I1.

Exercises 8 (a)
9, 2. 36, 3. 10, 4.5, 5.6, 6. 256, 7.1332, 8.16, 9. 16.

Exercises 8 (b)

120 2.(i) 1680, (i) 720, (i) 1 3.(i)30240, (i) 840, (iii) 144 (iv) %
(v) 64, (vi) 40320 5.8 6.6 7.8 8. m=6,n=2
8, 11.36, 12. 150, 13. 420, 14. 60, 15.216, 16.
12880
1 . o Am
< (12) 1, 18. 480, 19. 12, 20. 27720, 21.(n !l (@O, (i T=y,
22.12

Exercises 8 (¢)
(i) 220 (i) 455 (iii) 252 (iv) 70 (v) 256
(i) 15 (i)17 3.n=8,r=4, 4. %n n-3) 5.2m_1
7200 7. 700 8. 84,50 9. 120 10. 32 11. 1770 12. [10 x[11
(|7) 14. 7 (besides 1155) 15. 14 (besides 1 and 210) 16. 22 (besides 1 and n)

(r,+ 1) (r,+ 1) ... (. +1)—1 (including N), 18.4, 19.4, 20.57,  21. 'C

3

30 23. 78 24. 5 @n +r-1)+125 [6%]5

Exercises 9 (a)

Forn=6;1,6,15,6,1; forn=7;1,7,21,35,21,7, 1
24x  5.1-0510100501 6.(@F,®F©F@T

@1 ynt1 © L (@5and5, 8.@)20 (b) 126x, 120 () 70249

252 x1010 20 10. (a) 210 x6%2a™ (b) yes, — 252 x 6° o' (sixth term)
(a) 252 a* (b) No. 12. (a) 2220, (b) 2352
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Exercises 9 (b)

2. ()n2! (ii)y(n+2) 20! 3.1
5. ()0 (i)n(m—1)2~2 (iil) n (n +1)2"2 (iv) rmlLl 9.a=9, b=10
EXERCISE - 10 (a)
L ()
2. (1) No (i1) Yes (i11) No
3. -I<r<1
4 =0
5. (iv)
0. pt+q-n
7. -(ptq)
ST L
ne1 -
«© 7
9. 2
n=12""1
_ l-a®  ma® ) 25 lexex
e T Wy asy W ™ Ty
(V) _2 + 2].1+1 - n2n+2
: ] o1
11. (1) 1, (11) 2 (111) 0 (1v) 3 ) 1
12. (1) 112 n(n+1) (n+2) (i) % n(n+1) (n+2) (n+3)
1 _ 1 20
(iii) 3 000+ (072) 3) () (v) 7 (3n-1) (3ir+2) B+ S) (BneB) + -

(v) % n(n+1) 2n+13) (vi) % n* (n+1)>+n(n+1) + é n(n+1) 2n+1) +2n
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i) n? (n+1)? + % n(n+1) 2n+1) + % n(n+1)

1
13. () 2+ 4n -1. () ¢ n(r-30+25)

14. 20615 () 4335

EXERCISE - 10 (b)

x*(Log,2)* _ x'Log,2)

1. (1) 1+ Loge 2 + 5 3 + ..

(ii) -1+5X-4X2+5—36X3+ 0.x* + ...

XZ X4

(111) 1 - ? + Z LR

. X3 X5

(IV) X - ? + ; = aeas

2,53, 5.4
el 1+ X+Xx"+—x" + =x " + ...

(V) L|: X+X 6x 8:{ }

2 X - et
Exercises 11 (a)

. .. 6 . 1 -1 .

1. () 32 (i) 35 2. -3,5 3. g’,4 4. (i) (5, 7) (ii)

#3)

1

5.2 6. 8 710 8.0 5 (Gl (iii) 3 (iv)—1

9. (i)30° (ii) 45° (iii) 60° (iv) 135°

10. (i) tan! [+ —V3)] (i) tan) [ £ (2 +3)] 12.21,-11) 15.(0, 4) 16. (-

10, 19)
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17.2:5:3:4 18. (—% —1] 19. (1, 3),(3,-1),(-5,7) 21. 7x + 4y =

8.

15

Exercises 11 (b)

(2) =9 (b)2 (c) 4 @ 5 (©60°

@F ®T (©F (AT (©F ®T (F M)F €
F ()hF

3x—4y+3 =0 5.x3+)P+10x+9=0

@x+ . 3y+ J3-1=0 (b)y=2 ©)x+3y+7=0

x+y=1,3x=2p+12=0 () 3y +x+4=0 (Dx—3y-5=0
(g) 2ax—2by = a* - b* (h)2b'x-2d'y=a'b’ —ab  (1)2y=3x,y=06x (j) 4x—3y+

X_V_ x Yy
510 1@ 7Tp

22=0 (k)y—acos’d=(x— asin’0)cotb6 ()

(@) 3x+4y+3=0, 3x+4y+ 17=0(b) (an — chx+ (nb—cm)y =0
(an+ clyx+bn +cm)y + cn =0 , (a*+ b)) n*= (P +m?) ¢

(c) x+y=5 (d) 10x—25y—46=0 (e)8x—1ly+6=0

-9,6

9.()x—y+1=0  (i)8x—5y = 1 (i) 7x— 4y + 1 =0

I1.

12.

13.

14.

18.
20.

21.

@) lx—y= 35, x+11y+19=0 (b)x=3y=4, 3
_ o (15 10) (28 21
49 6 39 40 o
@ 13 ™3 3z © 73 @2V13  (eacos 2B
111
V27375
Ax+By+C= +(Bx— Ay +Ak—Bh) 19. 15° or 75° {0 x - axis

2x—y+3=0,2x-3y-6 =0,7x-7y-9=0

31 25)

x-y=2,x +6x=27, (7,7 23.(a) 3x+3y+2=0 (b) 64x — 112y

=55
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o p 6 2 —o (8 4
24. (@ ¥=y= Tisino+ cosa (b)( 7° 7) 25 Z+y-1=0, (5’ 5)

26. (@) y=+2x (b) 2x+y=0,x—3y=0
(c) y = (tanO — secO)x, (tan® +secO)x +y=0 (d)x=0,3x+4y=0
27. Qy-mx)(y—nx)=0 (b)»=9 ©4*-N*+4x+1=0(d)x—-py)(x+2y+5)=0

28.(c)and (d) 29.(a)£3 (b)—11 30 (a)-3 (b) Follow 8.7 Example 16.
2
©% = b =k b=\ —ab _ g—Ng —pr
r p q b 2
31. (a) tanl¥ (b) tan"'5 (c) 45°

32 @xy=00d)x*—)»*+14xy =0 (c)x=)y*=(cosO+sinO)xy (d)x*—)y*+cotbxy=0
34, x¥*+y*=4 35. 2x*+ 3y +4xy+1=0 36.45°37. x+2y=0

Exercises 12 (a)

1. (a)(1,3) (b)-2 (c) outside  (d) +42 (e) 2

2. (@F (b)F ©T (d) F eT

3. @@-1)+ (y—4)7=18 b x+2)*+(y-3) =13
(© (x=3)°+ (v=2y=4 (d)(x+ 1P+ @-472=1
©)X+5) =T+ =3)(=5=0 () (x+52+(@=+52=25
(@ > +)* —5x=0 (h) 4 +4)” —5x+8y —18=0
(1) 5(x*+y)—1lx—8y —67=0 (k) (x =3)*+ (y+ 12)> = 144 orx*>+ ) —6x—6y +9
=0
D=3y +@y+2)7=4 (m) x*+y*—ax—by=0 orx*+y*+ 10+ 20y +25=
0

) (=33 + (-3+2)7=18

5. (@x*+3)2=25,(0,0),5 (b) 16 (x*+)?) — 69x + 54y —232=0; (%, __1267)

2 |Ln

4. (@(3,2),5

—
o
R
P
|
::‘oq
a‘ '
S—
)
Y
+
~
(3]
|
)
=
—
o
P
0 |—
|
9 |

@bw+w+mtww—ﬂﬁm(azb

d) 2(2+1%) —1lx— 10y —43 =0, (17 %)

[u—
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6. (a)3x2+3)2 —2x—10y=0 ©x+1? —4x—3y= 0
(d)x*+3)* —6x+8y=0 (€) 98 (X +17) — 196x — 392y —95= 0

7. (0,2), (0, 6),4,(3,0), (4,0);1

9. D E+H+GE-DE-5=0 10. > +)* —2x —2y+1=0

1. (@) (x=37+(-2)= % (b) (5x + 12)* + (5y + 16)* =100 (c) x>+ * =130

(d) 2x—ay+4(y+a)y= a* or 16x* +16y*— 16ax + 72ay + 81a* = 0

(€) X+ —2kx—2ky+ K =0[2k=a+b+ya*+1p* ]
13. (@) 3x—4y=254x+3y=0  (b) —7x+10y—-44=0,10x+ 7y-1=0
(©)2x+5y-40=0, 2x=5y-10=0 (d) (x, + ) (x,+ @)+, + /) (v, ) =0

©)9,7, Y130

14. (@) x+y= %3 /2 (b) 3x—4y+5i15\/_=0
() 2,1),x—Ty—-45=0 (H 4y—-3x+2=0,4y-3x+52=0,k=2,5
15. (a) 442 ) 1 © 52
17 11
16. @ |~5- 5 ) 0)3x+4y=10 17.3°% + 357+ 30x+32y—8=0
18. x*+)*=3ax+by=0 19. 8&x +4+3=0 20. 3x—4y +6=0

Exercises 12 (b)

l. (@) 2y-3=0 (b) 1 ©3 (d) 8 (e)y=0

® y=0 @x+1=00) 5 ©F @3 ® 5dx=0

5

(m) no where (n) @ (0) % ® 372
2. @T®FOF @T © FOT @FMTOT GFRFOF@mFWT(©)F
3. @x*=12 (b) V¥ +8x=0 (c) (¥ +2)* =36 (x—6)

@ (+2P=12(- 1) (e) y=6x (D) +4x=0

(2) 2+ 10y =0 (h) y =32+ 2x +2 (i) 252 + 13y + 84x — 180 =0

Oe-3y=12x-1) K x-1)12+12@+1)=0

2 2 2 2 ) 2
4. R A XY XY
@G +oy =1 ® 5t35 =1 © Fg+7 = !
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(d)%+§ =1 (e) (x 5) (VQ:) 1 O @+32+3-332=9

(8) 2x* +4y* =25 or 4x* +2y?=25 (hx¥*+42=4 or 4°+)*=4

M 2—§+% =1 () S°+82=77 ® (x—93)2+0’—44)2 _
W oL - ()3 %=1 © %-% _

(d) 3P -x*=9 () 22 —)* =8 () 3_6_1_2 -

(x-D> (+2)? _ (x— 2) (+3)?
€3] TR =1 (h o

i 0= @-n* _,

9 4
T —2), (—i, 0),(—%, —4) L4, y+2=0, 4 +9=0
J3 1)y (.3 1y (1 11y (_5 _11) (_5 _11
o (23 19 (3 1) (1 1) (5 1) (5 1) s g
1 3 1
(c) (_E’ _Z):r (_5’ _1):(07_1)s (_15_1)7 lsZX+1:O)2y+1:0

61 61 11y (_61 17 - -
(d)(—lﬁ—”)( = 7)( 1 2)( 1 2),y+7—0,4x+67—()

(@) (1, -1), (-2, -1), (0, -1, (L1, (3, -1, (-1, -1 Y3) (1 £ 1,14 3 ), x =1 tde=1

oho (el (eEed (b
(—% * 2 _73ix/5) 2x-7=0 2x+9=(),%

© (.—4).(3£l,-4), 323 .-4), 3.—4%)2). ( —4 i%},r=?i% e=%

(d)(—2,1),(—2,11@),(—2,113),(—212,1)(— %1i\/§),y=1i%’e:T5

@) G,-1), 3% 7 —1), 3+43,-1),(3, —141), (3 43, —liﬁ),xzai%,ezg

(b) (0, 5), (0.5 +2). (0, 5. 13 ), (£3. 5) (i% Si\/ﬁ),yzs : % o= V13
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C
© (1L60.022,6,(1% 63,6 (1,6£7), (12 V53, 6 B) v= 15 7= o= 35

(@) (0,-1), (£2 V2 ,-1) (£2/5 —1), (0, =1 £2/3), (+2 5, -1+ 32 ).
xX== % ,e= %

8 24

10. 9y = dax 11. (b) tan™ (E),tanl(T)

12.(A) 9x -6y +4a=0, 18x+27y—44a=0
®y—-x—-—a=0,x+y+a=0,y+x-3a=0,y—x+3a=0
©)x—-y+a=0,9%+3y+a=0, x+y-3a=0,9%-27y—-19a =0

() 2x+y+1=0, (%, —2) (2) In = am’
13. (a) 8x*+9y*-288=0 (b) (x=4)° + (y-2)° -1
36 32
2 2 ’ 2
@75 T S R :

14. (a) 3x+2/5y—18=0,9 (y—./5 ) =25 (3x-8)
(b) +x+3y=3,x+3y=1+23 x+3y=2+3 — 1

() (_?85 %) (dy=x+3 () 6x—12y+5=0
15. (a) 3)* =12y —x2+9 =0 (b) 3 —2)2 =6 (© 13.0), 2
16. (a)2y—x=1,18x +y+55=0, (b) 33y — 20x = 11

(©)3x—2y+33 =0 (d) (=5,3),x—y +8=0

EXERCISE 13

L@ (T34 @5 ©63,4; @]
2. (a)  x,yand z axes respectively.

(b)  zx-plane, xy-plane and yz-plane
3. (a)  1st, 2nd and 4th.
® () (7-5,0) i) (0,5,3); (i) (7,0.3); (i) (7,0,0); (¥) (7,03); (Vi) (7,-5,0)
4. (a)  Non-coplanar, No
5. (1) and (i1)
6. (1) a=0, (ii) y=0, (iii) ¢=0, (iv) y=2=0, (v) x=7=0, (v1) a=b=0
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11.

12.

(1) y-axis; (ii) z-axis; (i) x-axis;

zZ, X and y axes

(@) 10+5~2 ; () x-22=0

a+a,+a, bj+b,+b, c +c,+c, =7 77 4
(a) -1:2; (b)5:4:; (¢ 3 , 3 , 3 ; 6 18°3 s(e) 1:2

EXERCISE 14 (a)

1.7 23 34 43 57 61 7o 81 90 105
EXERCISE 14 (b)

False[since|!|=|-1]

() -1 (i)-2 (i) % V)6 (V)3 (v % (vi) 2—30 (Vi) 8/5 (ix) 27 (%) —% (xi) % (xif) 3%
(xiif) 4%° (xiv) % (xv) 0 (xvi) o
(i) % (ii) % (i) 0 (iv) o0 (V) % (vi) 1 (vii) % (viii) 1 (ix) 6 (x) % (xi) % (xii) % (xiii) % (xiv) 0

. .. .. : ST : . oy Ltflx : fix
(1) 1 (1) - (vii) does not exist. (viii) 1 (ix) 1 (x) - (xvi) does not exist (xvii) i;((] ) does nto exist, i;f )
=-1

EXERCISE 14 (c)

(1) % (11) % (11) % (iv) o (V) % (vi) % (vii) 1 (i) % (1x) % (x) =1 (x1) % (x11) oo (x1i1) 1
xiv) 1 (xv) % (xvi) 1 (xvii) 1 (xviii) % (xix) 1
(1) sin o0 — oL cos a (i1) 0

(1) cos x (11) — sin X (ii1) sec?x (1v) — cosec X cot X (V) sec X tan X (Vi) — cosec?x (vii) E (vii1) " log.e

1
(1x) ilogae (%) a*log a (x1) e* (xii) 0 (xiii) 2 cos X (i) e

(1) % (1) 1 (1i1) 2 v) 2 (v) 1 (vi) a (vii) 2a (viii) 1 (ix) 2 (x) log% (x1) log 2 (xi1) 2 log a (xiii) 3 log 3

- log3-1log2
(x1v) m (xv)2log2
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N R SR S 1 | I . 1 Lo .

5. )] ) (1) m (111) m (1v) _ﬁ (v) 2 (vi) 3 (vi)) m (vii1) P xX)2 x) 0 (x1) 0

2 9 3 _ A,

(xii) 3 (xiii) 5 (xiv) 5 (xv) m—n:b_,m<n:> 0,m>n= o

6. (1) 0 (ii) log a (iii) % (iv) % (v) @ (vi) 1 (vii) log% (viil) 3 (iIX) a xX) b (x1) 1 (xii) log % (xiii) oo
(xiv) 1

7. (1) — oo (i1) does not exist (iil) does not exist (1v) 0 (v) e (vi) does not exist

8 () % )2 ()3 (1v) 5 (v) 2

Exercises 15
Lo @b

10.

(i) Ifniseven, sayn =2m, then M.D. =% ;ifnisodd, sayn=2m+1,

then M.D. = mm+1)
cn LD, 2m+1)
2
. ~1)
Variance 2

2n+1 . 2 a-
Mean value = % s variance = %

2 2
(a) Mean value = n; Variance = Q (b) Mean value = + 1: Variance = Q
Mean = 50.25; M D =7.075; Variance = 82.42

ForA:Mean=é

3> Variance ~ 1.244

For B: Mean= 2. Variance ~ 1.377

3 >
(1) Mean=5; Variance=6.5;c= .51 (i) Mean = 7; Variance = 4.67;c = .32
(i) Mean = 4; Variance = % c=".204
Mean=a + nd; M.D. =M , Variance = 1 n(n+Dd*
2n+1 3
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11. Mean value = 0; Variance = moi’:ﬂ‘:’:;’zy)
13. Gold
Exercises 16 (a)

BNCE (i) 5 (i) 5
2 0y (i) & (iji)%
3.0 % (ﬁ)% (i) 1 -5
40 55 (i) o= (i) 1- 5-
5.0 3 (i 5 G5l
o 0 xr N
10. 0 ¢ (i) 2 (i) &
L0 55 Gy 13
12 G 3 i 3. (i) 5 3

(V) P(AmB9)=P(A-B)=P(A)-P(ArB)= % i) %
0 QO?OOx 80¢, . (3¢, + 200, x 30Cy + 20¢, x 90y

Cio 100c,

15. () % (i) %
16, () 25

(i) There are two cases : The row can start with a boy; the row can start with a girl answer :

4! 4!
2( 8] ]
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9 8
17 (l) ﬁ (u) (2 x 152_ Cl) (lll) 1OC]
G Cs G
15 25
18. () _C6 (i) __C6 Cidii)
0 20
Ce Ce

Wc,
25

i (Cix PCy) &) 1_40_C

e, 6

19. Since the committee is to have at least 2 boys and 2 girls, the sample space is of size n =

(20, x 0+ (20¢y x 10¢3)+(*0¢, x 10¢y)

10 20 10
(i) 20C;x Cs (i) #
50 . 70 . 2 5 3 4
20. (1) m (ll)m 21. (1) 7, 7 (]1) 7, 7
6! 14
2. 23. 45
24, P(AAB)=P(A)+P(B)-2P(A~B) 25, 2x 313!
: > 8!
Exercises 16 (b)
2 1
Lo 2 i) 4
) e 12 .9 10
2. (i) Po= 4% forn=1,2,3,4,5,6 () 57 @) 5 ) 57
10 3
3. (1) ﬁ (H)E
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SYLLABUS

MATHEMATICS (+2 1st Year)
Course Structure

Unit Topic Marks No. of Periods
I Sets and Functions 29 60
I Algebra 37 70
I Co-ordinate Geometry 13 40
v Calculus 06 30
v Mathematical Reasoning 03 10
VI Statistics and Probability 12 30
Total 100 240

UNIT -1 : Sets and Functions

1.

Sets

Sets and their representations. Empty set, Finite and Infinite sets, Equal sets, Subsets, Subsets ofa
set of real numbers especially intervals (withnotations), Power set, Universal set, Venn diagrams,
Union and Intersection of'sets, Difference of sets, Complement ofa set, Properties of Complement
Sets, Practical Problems based on sets.

Relations & Functions

Ordered pairs, Cartesian product of sets. Number of elements in the Cartesian product of two finite
sets. Cartesian product of the sets of real (upto R x R). Definition of relation, pictorial diagrams,
domain, co-domain and range of a relation. Function as a special kind of relation fromone set to
another. Pictorial representation of a function, domain co-domain and range ofa function. Real
valued functions, domain and range of these functions: Constant, identity, polynomial, rational, modulus,
signum, exponential, logarithmic and greatest integer function, with their graphs, Sum, difference,
product and quotients of functions.

Trigonometric Functions

Positive and negative angles. Measuring angles in radians and in degrees and conversion of ong into
other. Definition of trigonometric functions with the help of unit circle. Truth of sirfx + cos’x =1, for
allx. Signs oftrigonometric functions. Domain and range of trigonometric finctions and their graphs.
Expressing sin (x £ ) and cos (x=* ) in terms of sinx, siny, cosx & cosy and their simple application.
Deducing identities like the following :

tanx+tany cotxcotyF1
tan(xty)=———,cot(xty) = —————

IFtanxtany cot yxcotx
b 2 i x+y Xx=y + x+y X—=y
sin x+sin y =2 sin > Cos > , CO8 x + COSs = > Cos 7
. ) x+y x-y Xty o ox-y
sin x - sin y =2 cos > sin > , COS X = COS Iy = -2 8in 2 sin >
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Identities related to sin 2x, cos 2x, tan 2x, sin 3x, cos 3x and tan 3x. Trigonometric equations
Principal solution, General solution of trigonometric equations ofthe type sinx = siny, cos x=cos

vy and tanx =tany. Proofand Simple applications of sine and cosine formula.
UNIT-II : Algebra
1. Principle of Mathematical Induction

Process ofthe proof by induction, motivation the application of the method by looking at natural
numbers as the least inductive subset of real numbers. The principle of mathematical induction and

simple applications.
2. Complex Numbers and Quadratic Equations

Need for complex numbers, especially ,/—] , to be motivated by inability to solve some of the
quardratic equations; Algebraic properties of complex numbers. Argand plane and polar
representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of

quadratic equations in the complex system. Square root of a complex number.
3.  Linear Inequalities

Linear inequalities. Algebraic solutions of linear inequalities in one variable and their representation
on the number line. Graphical solution of linear inequalities in two variables. Graphical solution of

system of linear inequalities in two variables.
4.  Permutations and Combinations

Fundamental principle of counting, factorial n. (n!), Permutations and combinations, derivation of

formulae and their connections, simple applications.
5.  Binomial Theorem

History, statement and proof of the binomial theorem for positive integral indices. Pascal’s triangle,

General and middle term in binomial expansion, simple applications.
6.  Sequence and Series

Sequence and Series, Arithmetic Progression (A.P). Arithmetic Mean (A.M.) Geometric Progression
(G.P), general termofa GP, sum of n terms of a GP., Arithmetic and Geometric series, infinite GP.
and its sum, geometric mean (G.M.), Harmonic (mean) relation between A.M., GM. and H.M.,

Formula for the following special sum :
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Arithmetico-Geometric Series, Exponential Series, Logarithmic Series, Binomial Series.

UNIT - III : Co-ordinate Geometry

1.

Straight Lines

Briefrecall of two dimensional geometry from earlier classes. Slope ofa line and angle between two
lines. Various forms of equations ofa line : parallel to axis, point-slope form, slope-intercept form,

two-point form, intercept form and normal form. General equation ofa line. Equation of family of
lines passing through the point of intersection of two lines. Distance ofa point froma line, Shifting of
Origin.

Conic Sections

Sections ofa cone : circles, ellipse, parabola, hyperbola; a point, a straight line and a pair of ntersecting
lines as a degenerated case ofa conic section; Standard equations and simple properties of Circle,

parabola, ellipse and hyperbola.
Introduction to Three-dimensional Geometry

Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between

two points and section formula.

UNIT-1IV: Calculus

1.

Limits and Derivatives

Derivative introduced as rate of change both as that of distance function and geometrically. Intuitive
idea of limit. Limits of polynomials and rational functions, trigonometric, exponential and logarithmic
functions. Definition of derivative, relate it to slope of tangent of a curve, derivative of sum, difference,

product and quotient of functions. The derivative of polynomial and trigonometric functions.

UNIT-V : Mathematical Reasoning

1.

Mathematical Reasoning

Mathematically acceptable statements. Connecting words/phrases-consolidating the understanding
of““ifand only if (necessary and sufficient) condition,” “implies”, “and/ or”, “implied by”, “and”, “or”,
“there exists” and their use through variety of examples related to real life and Mathematics. Validating
the statements involving the connecting words, difference between contradiction, converse and

contrapositive,
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UNIT-VI : Statistics and Probability

1.

Statistics

Measures of dispersion; Range, mean deviation, variance and standard deviation of ungrouped/

grouped data. Analysis of frequency distributions with equal means but different variances.

Probability

Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events,
‘not’, “and’and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic)
probability, connections with the theories of earlier classes. Probability ofan event.Probability of

<

not’, ‘and’ ‘or’ events.



