ELECTROSTATIC

1. Quantisation charge

$$Q = ne$$

2. Coulomb's for between 2 charges

$$F = \frac{1}{4\pi\varepsilon_o} \cdot \frac{q_1 q_2}{r^2}$$

3. Coulomb's Constant

$$\frac{1}{4\pi\varepsilon_o} = 9 \times 10^9 \text{ Nm}^2 \text{C}^{-2}$$

4. Permittivity

$$\varepsilon_o = 8.85 \times 10^{-12} \,\mathrm{C^2 N^{-1} m^2}$$

5. Relative Permittivity or Dielectric

Constant

$$\varepsilon_r \text{ or } K = \frac{\varepsilon}{\varepsilon_o}$$

6. Force in any Medium

$$F_m = \frac{F_{air}}{k}$$
 or $\frac{F_{air}}{\varepsilon_r}$

7. Electric field intensity

$$E = \frac{F}{q_o}$$

 Electric field intensity at distance 'r' from a charge 'q'

$$E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{q}{r^2}$$

Electric field intensity at a point on axialline

$$E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{2 \operatorname{Pr}}{(r^2 - a^2)^2}$$

10. For short dipole

$$E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{2P}{r^3}$$

11.Electric field intensity at a point due to dipole

$$E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{P}{r^3} \sqrt{1 + 3\cos^2\theta}$$

12. Balanced of charge particle

$$qE = mg$$

13.Electric field intensity at a point on equatorial line

$$E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{P}{(r^2 + a^2)^{3/2}}$$

For short dipole $E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{P}{r^3}$

14. Torque Experienced by dipole

$$\tau = pE \sin \theta$$

15. Electric flux (ϕ)

$$\phi = \int \vec{E} \cdot \vec{ds}$$

16.Gauss law

$$\phi = \frac{q}{\varepsilon_o}$$

17. Electric flux due to infinite sheet

$$\phi = \frac{\sigma}{2\varepsilon_o}$$
 σ =surface charge density

18. Electric field due to line charge

$$E = \frac{\lambda}{2\pi\varepsilon_o r}$$

 λ = Linear charge density

 Electric field intensity on the surface of hollow spherical shell

$$E = \frac{1}{4\pi\varepsilon_o} \cdot \frac{q}{r^2}$$

20.Inside the shell

$$E = 0$$

ELECTRIC POTENTIAL

1. Electric Potential

$$V = \frac{W}{q_o}$$

2. Potential difference between 2 point

$$V_A - V_B = W/q_o$$
 $V_A > V_B$

3. Potential due to single point charge

$$V = \frac{1}{4\pi\varepsilon_o} \cdot \frac{q}{r}$$

 Potential at a point due to dipole on a axialline

$$V = \frac{1}{4\pi\varepsilon_o} \cdot \frac{p}{r^2}$$

5. Potential on equatorial line

$$V = 0$$

6. Electric field and potential gradient

$$E = \frac{-dv}{dx}$$

7. Potential Energy betⁿ 2 charge

$$U = \frac{1}{4\pi\varepsilon_o} \cdot \frac{q_1 q_2}{r}$$

8. Potential Energy of dipole

$$U = - PE \cos \theta$$

$$\mathbf{u} = - \vec{p} \cdot \vec{E}$$

Work done to rotate dipole in Electric field

$$W = -PE (\cos \theta_2 - \cos \theta_1)$$

10.Potential on or inside the spherical shell

$$V = \frac{1}{4\pi\varepsilon_o} \times \frac{q}{r}$$

CAPACITANCE

Capacitance

$$c = q/v$$

Capacitance of Isolated spherical conductor

$$c = 4\pi\varepsilon_o r$$

3. Capacitance of parallel plate capacitor

$$C = \frac{\varepsilon_o A}{d}$$

4. In presence of di-electric

$$C = \frac{\varepsilon_o A}{d - t + \frac{t}{k}}$$

5. In fully filled

$$C = \frac{\varepsilon_o A}{d}$$

6. $\begin{bmatrix} C_{med} \\ = kxC_{air} \end{bmatrix}$

7. In series

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

8. In parallel

$$C = C_1 + C_2 + C_3$$

9. For equal Capacitance

$$C_S = c/n$$

$$Cp = nc$$

10. Energy stored in capacitor

$$u = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{Q^2}{2c}$$

11.Common potential

$$V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$$

CURRENT ELECTRICITY

1. Electric current

$$I = \frac{q}{t} = \frac{ne}{t}$$

$$I = \frac{dq}{dt}$$

2. Drift velocity

$$V_d = \frac{eV\tau}{ml}$$

Relation between current and drift velocity

$$I = nAV_d e$$

4. Mobility

$$\mu = \frac{V_d}{E}$$

5. Ohm's law

$$V = IR$$

6. Resistance

$$R = \rho \frac{\ell}{A}$$

 $[\delta = Resistivity]$

7. Conductance

$$G = \frac{1}{R}$$

8. Conductivity

$$\sigma = \frac{1}{\rho}$$

 Relation between current density and Electric field

$$J = \sigma E$$

10. Current density

$$J = \frac{I}{A}$$

11. Series combination of Resistance

$$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \dots$$

12.Parallel Combination

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

13.E.m.f and P.D

$$E = V + Ir$$

R = Internal Resistance

- 14. $I = \frac{E}{R+r}$ [for a single cell]
- $15. r = \left(\frac{E V}{V}\right) R$
- 16.Cells in Series

$$I = \frac{nE}{R + nr}$$

17.Cells in parallel

$$I = \frac{E}{R + \frac{r}{n}} [\text{ n cells parallel}]$$

18.Mixed grouping

$$I = \frac{MnE}{R + \frac{nR}{m}}$$

19. Wheatstone bridge

$$\frac{P}{Q} = \frac{R}{S}$$
 [s = unknown resistance]

20.Meter bridge

$$\frac{R}{S} = \frac{l}{100 - l}$$

21. Potentiometer Principle

$$V = K1$$

where K = potential gradient

22.Internal resistance

$$r = \left(\frac{l_1}{l_2} - 1\right)R$$

23. Heat produced due to Electric current

$$H = \frac{I^2 Rt}{4.2}$$
$$= \frac{V^2 t}{R \times 4.2} = \frac{VIt}{4.2}$$

24.Power

$$P = I^2 R = \frac{V^2}{R} = VI$$

25.Consuming Power = $\frac{V^2}{R}$ (supply voltage)

26. Unit of Electricity

$$= \frac{Watt \times hour}{1000}$$

27. Resistance with temperature

$$R = R_0 (1 + \alpha \Delta T)$$

$$R_2 = R_1 (1 + \alpha (T_2 - T_1))$$

MAGNETIC EFFECT OF ELECTRIC CURRENT

Biot savat's law

$$db = \frac{\mu_o}{4\pi} \times \frac{Idl \sin \theta}{r^2}$$

Magnetic field due to long straight current carrying conductor

$$B = \frac{\mu_o I}{2\pi r}$$

 Magnetic field due to circular current carrying conductor

$$B = \frac{\mu oI}{2r}$$

4. Magnetic field at a point on the axis of a circular current loop

$$B = \frac{\mu_o INR^2}{2(R^2 + x^2)^{3/2}}$$

Ampere's law

$$B = \mu_o I$$

6. Solenoid

$$B = \mu_o nI = \frac{\mu_o \text{ NI}}{\ell}$$

7. Toroid

$$B = \mu_o nI = \frac{\mu_o \text{ NI}}{2\pi r}$$

8. Lorentz Force

$$\vec{F} = \mathbf{q}(\vec{v} \times \vec{B})$$

9. force on current carrying conductor

$$\vec{F} = \mathbf{I} \ (\vec{l} \times \vec{B})$$

$$F = IlB \sin \theta$$

10.force between 2 parallel conducting wire

$$F = \frac{\mu_o I_1 I_2}{2\pi d}$$

11.Torque experienced by current carrying loop

$$\tau = \text{NIAB cos } \theta$$

$$\tau = NIAB \sin \alpha$$

- θ = Angle between plane of loop with magnetic field
- α = Angle between normal to the loop with magnetic field
- 12.Magnetic moment

$$M = NIA$$

13.Galvanometer

$$I = \frac{K}{NAB}\alpha$$

- G = Galvanometer constant
- 14. Current sensitivity

$$I_s = \frac{\alpha}{I} = \frac{NAB}{K}$$

15. Voltage sensitivity

$$Vs = \frac{\alpha}{V} = \frac{\alpha}{IR} = \frac{NAB}{KR}$$

16.Conversion of Galvanometer into ammeter

$$S = \frac{I_g G}{I - I_g} \quad (s = Shunt)$$

17. Conversion of galvanometer into voltmeter

$$R = \frac{V}{Ig} - G$$

18. Radius of charge particle

$$r = \frac{mV}{qB}$$

19. Time period

$$T = \frac{2\pi r}{V} = \frac{2\pi m}{qB}$$

20. Cyclotron frequency

$$f = \frac{1}{2} = \frac{qB}{2\pi m}$$

ELECTROMAGNETIC INDUCTION

1. Magnetic flux

$$\phi = BA\cos\phi$$

2. Faraday's law

$$|E| = \frac{d\phi}{dt}$$
 or $E = \frac{-d\phi}{dt}$

3. In other form

$$E = \frac{(\phi_2 - \phi_1)}{t} \quad or \ E = \frac{-N(\phi_2 - \phi_1)}{t}$$

4. Motional E.m.f

$$E = B1V$$

5. Self induction

$$\phi = LI$$

6. For 'n' turns

$$n\phi = LI$$

7. Self induced E.M.F

$$E = -L\frac{dI}{dt}$$

8. Natural induced E.M.F

$$E = -M \frac{dI}{dt}$$

9. Induced E.M.F in rotating coil

$$E = E_0 \sin \omega t$$

$$E_o = NAB_{\omega}$$

ALTERNATING CURRENT

 Relation between mean value of AC and peak value

$$I_{\rm m} = \frac{2Io}{\pi}$$

Relation between RMS value & peak value

$$I_{rms} = \frac{Io}{\sqrt{2}}$$

 Instaneous current in AC circuit containing inductance only

$$I = I_o \sin\left(\omega t \frac{\pi}{2}\right)$$

Inductive Reactance

$$X_L = \omega L = 2\pi fL$$

Instanceous current in A.C circuit containing resistance only

$$I = I_o \sin(\omega t - \frac{\pi}{2})$$

Capacitive Reactance

$$X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi fC}$$

7. Impedance

$$Z = \sqrt{R^2 + (X_{L} - X_{c})^2}$$

8. In LCR CKt

$$I_{rms} = \frac{E_{rms}}{Z}$$

9. Power factor

$$\cos \phi = \frac{R}{Z}$$

10. Average power in LCR

$$P_{avg} = \frac{E_o I_o}{2} \cdot \cos \phi = E_v I_v \cos \phi$$

11. At resonance

$$X_L = X_C$$

$$Z = R$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

12. For Ideal transformer

$$E_pI_p = E_sI_s$$

$$\Rightarrow \frac{Es}{Ep} = \frac{Ip}{Is} = \frac{Ns}{Np}$$

13. Efficiency of transformer

$$\eta = \frac{output\ power}{input\ power} = \frac{E_s I_s}{E_p I_p}$$

REFLECTION

Relation between f and R.

$$R = 2f$$

2. Mirror formula

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

3. Magnification

$$M = \frac{-v}{u} = \frac{h_2}{h_1}$$

- 5. The no. of image produced between two plane mirror inclined at an angle

$$n = \frac{360}{\theta} if \frac{360}{\theta} is \ odd$$

$$n = \frac{360}{\theta} - 1 if \frac{360}{\theta} is \ even$$

REFRACTION

1. Snell's law

$$\frac{\sin i}{\sin r} = 1 \mu_2$$

light goes from 1 to 2

Refractive index

$$\mu = \frac{c}{V}$$

Relative refractive index

$$\mu_2 = \frac{\mu_2}{\mu_1} = \frac{V_1}{V_2} = \frac{\lambda_1}{\lambda_2}$$

4. Critical angle and refractive index

$$\mu = \frac{1}{\sin C}$$

- 5. Sin C = $\frac{\mu_{Rarer}}{\mu_{denser}}$
- 6. Lens formula

$$\frac{1}{f} = \frac{1}{V} - \frac{1}{u}$$

7. Magnification:

$$M = \frac{V}{u} = \frac{h_2}{h_1}$$

$$M = \frac{f}{f+u} = \frac{f-V}{V}$$

Lens marker formula

In air

$$\frac{1}{f_a} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Lens in only medium

$$\boxed{\frac{1}{fm} = \left(\frac{\mu_{lens}}{\mu_{med}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$$

 $R_1 \rightarrow +ve$ $R_2 \rightarrow -ve$ for convex

for concave

10.Power of lens

$$P = \frac{1}{f} \text{ (m)} = \frac{100}{f} \text{ (cm)}$$

11.Lens in combination

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

12.Prism formula

$$\mu = \frac{\sin\left(\frac{A+d_m}{2}\right)}{\sin\frac{A}{2}}$$

A = Prism angle

dm = minimum deviation

13.Deviation

$$d = i + e - A$$

$$14.i = \frac{A + d_m}{2}$$

incident angle and refracted angle

$$r = \frac{A}{2}$$

15.Deviation for thin prism

$$d = (\mu - 1)A$$

16.Angular dispersion

$$\theta = d_V - d_R = (\mu_V - \mu_R)A$$

17. Dispersive power

$$\omega = \frac{d_V - d_R}{d} = \frac{\mu_V - \mu_R}{\mu - 1}$$

18. Simple microscope magnifying power

$$M = 1 + \frac{D}{f}$$

19. Compound microscope

$$M = \frac{V_o}{u_o} \left(1 + \frac{D}{fe} \right)$$

$$M = \frac{L}{f_o} = \left(1 + \frac{D}{fe} \right)$$

20. Astronomical telescope

$$M = \frac{f_o}{f_e}$$
 (Normal adjustment)

WAVE OPTICS

1. Maxima amplitude

$$A_{\text{max}} = (a_1 + a_2)^2$$

2. Minima amplitude

$$A_{\min} = (a_1 - a_2)^2$$

3.
$$\frac{I_{\max}}{I_{\min}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = \frac{\left(\frac{a_1}{a_2} + 1\right)^2}{\left(\frac{a_1}{a_2} - 1\right)^2} = \frac{(r+1)^2}{(r-1)^2}$$

4. Result and amplitude

$$A = \sqrt{{a_1}^2 + {a_2}^2 + 2a_1a_2\cos\phi}$$

5. Result and intensity

$$I = I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2}\cos\phi$$

6. If $I_1 = I_2 = I_o$

$$I = 2I_o(1 + \cos\phi)$$

7.
$$\overline{\frac{I_1}{I_2} = \frac{W_1}{W_2} = \frac{a_1^2}{a_2^2}}$$

 $W_1 = W_2 = Width \text{ of Slit}$

8. Distance of nth Bright fringe

$$\beta = \frac{n\lambda D}{d}$$

9. Distance of nth dark fringe

$$\beta = \frac{(2n-1)\lambda D}{2d}$$

10.Fringe width

$$\beta = \frac{\lambda D}{d}$$

11. Fringe width in other medium

$$\beta^1 = \frac{\beta}{\mu}$$

12. Condition for constructive interface

$$\phi = 2n\pi$$
 (Even multiple of π)

$$x = 2n \frac{\lambda}{2}$$
 (Even multiple of $\lambda/2$)

13. Condition for destructive interference

$$\phi = (2n-1)\pi$$
$$x = (2n-1)\frac{\lambda}{2}$$

14.Condition for minima in diffraction path difference

$$d\sin\theta = n\lambda$$

 Condition for maxima in diffraction path difference

$$d\sin\theta = (2n+1)\frac{\lambda}{2}$$

16. Central width of central maxima

$$x = \frac{2\lambda D}{d}$$

17.Distance of 'n'th minima from central maxima

$$y = \frac{n\lambda D}{d}$$

18.Distance of 'n'th secondary maxima from central maxima

$$y = \frac{(2n+1)\lambda D}{2d}$$

19.Brewster's law

$$\mu = \tan i_p$$

i = polarising angle

20. Law of malus

$$I = I_0 \cos^2 \theta$$

ATOMIC PHYSICS

1. Distance of closest approach

$$\frac{1}{2}mv^2 = \frac{2kze^2}{r_o}$$

r_o = Distance of closest approach

2. Radius of circular orbit

$$r = \frac{n^2 h^2}{4\pi^2 k z e^2 m}$$
$$r = 0.53 \times \frac{n^2}{z} A^o$$

3. Velocity of electron

$$V = \frac{2\pi kze^2m}{nh}$$
$$V = 2.18 \times 10^6 \, \text{m/s}$$

Energy of Electron

$$E = \frac{2\pi^2 k^2 z^2 e^4 m}{n^2 h^2}$$

$$E = -13.6 \times \frac{z^2}{n^2} ev$$

5. Wave length

$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Dual nature of Radiation matter

1.
$$E = hv = \frac{hc}{\lambda}$$

Einstein's photo electric emission

$$\frac{1}{2}mv^{2}_{\text{max}} = hv - hv_{o}$$

$$\frac{1}{2}mv^{2}_{\text{max}} = \frac{hv}{\lambda} - \frac{hv}{\lambda_{o}}$$

3. Work function

$$\phi_o = h v_o = \frac{hc}{\lambda_o}$$

4.
$$\sqrt{\frac{1}{2}mv_{\text{max}}^2 = eV_o}$$
 (V_o = stopping potential)

5. Debroglie wave length

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}$$

6. Debrogle wave length of electron in

$$\lambda = \frac{h}{\sqrt{2meV}} = \frac{12.27}{\sqrt{V}} A^o$$

NUCLEAR PHYSICS

1. Size of nucleolus

$$R = R_o A^{1/3}$$

2. Mass defect

$$\Delta m = Zm_p + (Zm_n) - M$$

3. Binding Energy

$$B.E = \Delta m \times c^2$$

4. If mass defect in amu

$$B.E = \Delta m \times 931 MeV$$

5. Decay law

$$N = No e^{-\lambda t}$$

6.
$$\left| \frac{N}{No} = \left(\frac{1}{2} \right)^n \right|$$

n = no of half life =
$$\frac{t}{t_{1/2}}$$

7.
$$t_{1/2} = \frac{0.693}{\lambda}$$

8.
$$t_{avg} = \frac{1}{\lambda} t_{avg} = 1.44 t \frac{1}{2}$$

SEMI CONDUCTOR DEVICE

 current amplification factor in common base

$$\alpha = \frac{I_c}{I_e}$$

current amplification factor In common emitter

$$\beta = \frac{I_c}{I_b}$$

3. Relation between $\alpha \& \beta$

$$\alpha = \frac{\beta}{1+\beta}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

By Padhi sir